

Water-Resources Investigations Report 03-4291

Water-Resources Investigations Report 03-4291

U.S. Department of the Interior

Gale A. Norton, Secretary

U.S. Geological Survey

Charles G. Groat, Director

U.S. Geological Survey, Reston, Virginia: 2004

For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225

For more information about the USGS and its products:

Telephone: 1-888-ASK-USGS

World Wide Web: http://www.usgs.gov/

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

Library of Congress Cataloging-in-Publication Data

Contents

Abstrac	t	1
Introduc	etion	1
Pi	urpose and Scope	2
D	escription of Study Area	2
Water-0	Quality Summaries	5
Regress	sion Equations for Estimating Water-Quality Concentrations	5
Equation	n Applications and Limitations	18
Summa	ry	32
Referen	Ces	32
Figur	res	
1.	Map showing location of selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota	3
2.	Map showing land use and land cover and physiographic areas in the Red River of the North Basin	
3.	Graphs showing linear and lowess relations between sulfate and streamflow for the	
	Red River of the North at Grand Forks, North Dakota, gaging station	16
Table	es	
1.	Statistical summaries of selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota,	
	Minnesota, and South Dakota	6
2.	Relations between selected water-quality constituents and streamflow (discharge)	
	for selected gaging stations in the Red River of the North Basin, North Dakota,	
	Minnocota, and South Dakota	10

By Tara Williams-Sether

Abstract

The Dakota Water Resources Act, passed by the U.S. Congress on December 15, 2000, authorized the Secretary of the Interior to conduct a comprehensive study of future waterquantity and quality needs of the Red River of the North Basin in North Dakota and possible options to meet those water needs. Previous Red River of the North Basin studies conducted by the Bureau of Reclamation used streamflow and water-quality data bases developed by the U.S. Geological Survey that included data for 1931-84. As a result of the recent congressional authorization and results of previous studies by the Bureau of Reclamation, redevelopment of the streamflow and waterquality data bases with current data through 1999 are needed in order to evaluate and predict the water-quantity and quality effects within the Red River of the North Basin. This report provides updated statistical summaries of selected waterquality constituents and streamflow and the regression relations between them.

Available data for 1931-99 were used to develop regression equations between 5 selected water-quality constituents and streamflow for 38 gaging stations in the Red River of the North Basin. The water-quality constituents that were regressed against streamflow were hardness (as CaCO₃), sodium, chloride, sulfate, and dissolved solids. Statistical summaries of the selected water-quality constituents and streamflow for the gaging stations used in the regression equations development and the applications and limitations of the regression equations are presented in this report.

Introduction

In 1994, the Bureau of Reclamation (BOR) began a twophase planning study to investigate and evaluate existing and future municipal, rural, and industrial (MR&I) water use in the Red River of the North Basin in North Dakota. Phase I of the study assessed water needs and Phase II identified preliminary alternatives to address water-quantity and quality needs. Phase I, Part A, was completed in 1998 and appraised the existing and projected MR&I water needs (Bureau of Reclamation, 1998). Phase I, Part B was completed in 1999 and addressed the instream flow issues that pertain to aquatic life and water quality (Bureau of Reclamation, 1999). Parts A and B of the Phase I study used streamflow and water-quality data bases developed by the U.S. Geological Survey (USGS) that included data for 1931-84 (Guenthner and others, 1990; Guenthner, 1991). The BOR needed the data bases to be redeveloped with data through 1999 in order to evaluate and predict water-quantity and quality effects within the Red River of the North Basin.

The Dakota Water Resources Act was passed by the U.S. Congress on December 15, 2000. The Act authorized the Secretary of the Interior to conduct a comprehensive study of future water-quantity and quality needs of the Red River of the North Basin in North Dakota and possible options to meet those water needs. The BOR will administrate the comprehensive study. The BOR has formed a Technical Team and a Study Review Team. The Technical Team will develop plans for the study, perform technical evaluations, draft portions of the Needs and Options Report, and perform other day-to-day study activities. The Study Review Team will review draft products and provide input into study processes and products.

The USGS conducted a study in cooperation with the BOR to provide needed information for the comprehensive study. The study will provide updated historic and unregulated monthly streamflow for selected gaging stations in the Red River of the North Basin for 1931-99 and will develop regression equations between selected water-quality constituents and streamflow. Thus, the study will update the previous reports of Guenthner and others (1990) and Guenthner (1991). The report by Emerson and Dressler (2002) updates the streamflow report by Guenthner and others (1990). This report updates the water-quality and streamflow relations report by Guenthner (1991).

Purpose and Scope

This report provides regression equations for estimating monthly mean concentrations of selected water-quality constituents that can be used for input to and calibration of the water-quality model selected by the BOR for the Red River Valley water-supply project studies. Specific objectives were to (1) provide relations with streamflow for estimating concentrations of selected water-quality constituents, and (2) provide statistical summaries of selected water-quality data used in developing the regression equations.

The equations were developed by regressing 5 selected water-quality constituents against streamflow for 38 selected gaging stations in the Red River of the North Basin (fig. 1). The water-quality constituents were hardness (as CaCO₃), sodium, chloride, sulfate, and dissolved solids. Calcium, magnesium, nitrate, total organic carbon, iron, manganese, pH, field conductivity, alkalinity, and turbidity also were considered for the regression equations. However, data were too few or were considered unusable because changes in sampling techniques and laboratory analyses made comparison over time unrealistic. Data bases from the Environmental Protection Agency, North Dakota Department of Health, North Dakota State Water Commission, and various agencies from Minnesota and Canada (Macek-Rowland and Dressler, 2002, p. 6-7) were considered for the regression equations but were not used because of changes in sampling techniques and laboratory analyses and because of the absence of streamflow data. Available waterquality and streamflow data for 1931-99 were retrieved from the USGS computerized National Water Information System and from North Dakota, Minnesota, and South Dakota USGS data bases. Period of records for available water-quality and streamflow data varied within the Red River of the North Basin.

Description of Study Area

The Red River of the North Basin is part of the Hudson Bay drainage system. Parts of Montana, South Dakota, North Dakota, and Minnesota in the United States, and parts of Saskatchewan and Manitoba in Canada are drained by the Red River of the North. The North Dakota-Minnesota boundary is formed by the Red River of the North. Drainage area of the Red River of the North at Emerson, Manitoba, gaging station, which is 0.8 mile downstream from the international boundary, is 40,200 square miles (U.S. Geological Survey, 2000, p. 196). The river flows northward 394 miles to the United States-Canadian boundary. From the international boundary, the Red River of the North flows north about 155 miles and discharges into Lake Winnipeg. The Red River of the North Basin upstream from the international boundary is the only part of the basin included in the study area.

The Red River of the North begins at the confluence of the Otter Tail and Bois de Sioux Rivers in Wahpeton, N. Dak., and Breckenridge, Minn. The Otter Tail River is regulated by

Orwell Reservoir, which began operation in 1953. The reservoir provides 13,100 acre-feet of storage for multi-uses. Numerous other controlled lakes and ponds and several power plants affect the flow of the Otter Tail River. Lake Traverse and Mud Lake are natural instream lakes near the headwaters of the Bois de Sioux River. In 1942, Reservation Dam on Lake Traverse and White Rock Dam on Mud Lake were completed. The total storage capacity for Lake Traverse and Mud Lake at an elevation of 981.0 feet is 153,700 acre-feet.

The Red River of the North flows over lacustrine deposits of glacial Lake Agassiz through its entire length in North Dakota. The slope of the river is extremely flat. The river falls only about 200 feet in its 394-mile course from Wahpeton, N. Dak., to the international boundary (Miller and Frink, 1984). Water quality in the river is affected by the lacustrine deposits, by inflow from major tributaries from North Dakota and Minnesota, by ground-water discharge, and by municipal, agricultural, and industrial effluents.

The Sheyenne River is one of the major tributaries to the Red River of the North. The Sheyenne River has a drainage area of about 6,910 square miles (not including the closed Devils Lake Basin). From its headwaters near Harvey, N. Dak., the Sheyenne River, which is about 500 miles long, flows eastward about 150 miles, southward about 200 miles, and then northeastward to its confluence with the Red River of the North, north of Fargo, N. Dak. (Souris-Red-Rainy River Basins Commission, 1972, p. D-50).

The Sheyenne River Basin lies in two distinct physiographic areas (fig. 2). The drift prairie area extends from the headwaters to the vicinity of Lisbon, N. Dak., and the glacial Lake Agassiz area extends from the vicinity of Lisbon, N. Dak., to the confluence of the Sheyenne River and the Red River of the North. A hilly delta topography exists from Valley City, N. Dak., to the vicinity of Kindred, N. Dak. Most of the Sheyenne River valley from the headwaters to Kindred, N. Dak., is incised into glacial till. The valley from Sheyenne, N. Dak., to Kindred, N. Dak., ranges from 100 to 200 feet in depth and 0.2 to 2 miles in width. Average gradient of the river is 1.5 feet per mile in the drift prairie and hilly delta areas and about 1 foot per mile in the glacial Lake Agassiz area.

No flow has been recorded at times in the upper reaches of the Sheyenne River. Flow in the lower reaches of the river is regulated partly by releases from Baldhill Dam, which began operation in 1949. Lake Ashtabula, formed by Baldhill Dam, has a capacity of 69,100 acre-feet between the invert of the outlet conduit and the normal pool elevation. Lake Ashtabula is operated for flood control (capacity at maximum pool elevation of 1,273.2 feet is 116,500 acre-feet), municipal water supply, recreation, and stream-pollution abatement through low-flow augmentation.

Figure 1. Location of selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.

Figure 2. Land use and land cover and physiographic areas in the Red River of the North Basin. (Modified from Tornes and others, 1997).

Water-Quality Summaries

Statistical summaries were computed for the 5 selected water-quality constituents and for streamflow using data collected at 38 selected gaging stations in the Red River of the North Basin (table 1). The statistical summaries include number of samples; average annual sampling frequency; number of sample years; descriptive statistics of the maximum, minimum, mean, and standard deviation; and values for the 75th, 50th, and 25th percentiles. The percentiles are the percentage of samples in which the values or concentrations were less than or equal to the value given. The 75th percentile values may be used as indicators of concentration during lowflow conditions, and the 25th percentile values may be used as indicators of concentrations during high-flow conditions. Periods of available data for the water-quality constituents for each gaging station also are listed in table 1. The available water-quality data for each gaging station varies considerably throughout the Red River of the North Basin. Of the 38 gaging stations, about 5 percent had data available during 1940 through 1999, about 16 percent had data available during 1950 through 1999, about 37 percent had data available during 1960 through 1999, about 37 percent had data available during 1970 through 1999, about 2.5 percent had data available during 1980 through 1999, and about 2.5 percent had data available during 1990 through 1999. The sampling frequency of the water-quality constituents varied considerably at 11 of the 38 gaging stations but was more consistent at the remaining 27 gaging stations.

Instantaneous streamflow was the type of gaged streamflow desired for the regression equations because instantaneous streamflow provides a direct link to the waterquality constituents sampled at the same time. However, the records of instantaneous streamflow in the water-quality data base were not always complete. Daily mean streamflow records were more complete than instantaneous streamflow records and were readily available for most of the gaging stations; therefore, the daily mean streamflow records were used to develop the regression equations with the water-quality constituents when instantaneous streamflow records were too few. At some gaging stations, instantaneous and daily mean streamflow records were combined to complete the discharge record needed when only a few instantaneous streamflow records were incomplete.

Daily mean streamflow provides a streamflow measurement averaged over a day interval. Instantaneous streamflow provides a streamflow measurement at a point in the day. Daily mean streamflow may provide bias in regression equation development. The bias may be high or low depending upon the type of sample and when the sample was collected. For example, a high-flow sample will be collected near a peak flow for the day. Using a daily mean instead of instantaneous would under estimate the flow at the time of sampling. The reverse would be true for low-flow samples.

Regression Equations for Estimating Water-Quality Concentrations

Several types of regression equations were considered to model the relation between water-quality constituents and streamflow in the Red River of the North Basin. In order to determine which regression equation might be best suited for each gaging station in the basin, a linear least-squares curvefitting plot and a lowess (locally weighted scatter-plot smoother) plot were made for each water-quality constituent and for streamflow at each gaging station. Locally weighted least-squares regression is used to obtain the values for the lowess plots that display a smoothed line along with a scatter plot of associated points. The lowess plots are helpful in picking up trends in the data that a linear plot may miss. A linear and a lowess fit plot of sulfate and streamflow at the Red River of the North at Grand Forks, N. Dak., (05082500) gaging station are shown in figure 3. Many of the gaging stations had similar looking plots. After reviewing the plots, it was apparent that a simple linear regression equation between the logarithm of concentration and the logarithm of streamflow would not be adequate to develop a relation between water-quality constituents and streamflow for most gaging stations. The linear fit graph in figure 3 shows the sinuous look of the data and the wide spread away from the linear line. Therefore, two general equations were used to model the relation between water-quality constituents and streamflow.

The first equation assumed that the base-10 logarithm of a water-quality constituent concentration is a piece-wise linear, continuous function of the base-10 logarithm of streamflow. The breakpoints (the values of base-10 logarithm of streamflow at which slope changes occur) can be selected to obtain the best statistical fit to the data. For example, the lowess fit in figure 3 indicates that a piece-wise linear relation between logtransformed sulfate concentration and log-transformed streamflow may be a reasonable assumption for the gaging station. It appears that two breakpoints, one near base-10 logarithm of streamflow equals three and one near base-10 logarithm of streamflow equals four, might be appropriate for the data in figure 3. For the piece-wise linear model with K breakpoints, log-transformed concentration can be computed using K + 1 linear equations. For example, for two breakpoints, log-transformed concentrations can be expressed as:

$$\log C = \begin{cases} a_0 + \frac{a_1 - a_0}{b_1 - b_0} (\log Q - b_0), & \text{if } b_0 \le \log Q < b_1 \\ a_1 + \frac{a_2 - a_1}{b_2 - b_1} (\log Q - b_1), & \text{if } b_1 \le \log Q < b_2 \\ a_2 + \frac{a_3 - a_2}{b_3 - b_2} (\log Q - b_2), & \text{if } b_2 \le \log Q < b_3 \end{cases}$$
 (1)

[mg/L, milligrams per liter; --, no data]

Table 1. Statistical summaries of selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.

						Descriptive statistics	statistics		Percei wh les	Percentage of samples in which values were less than or equal to those shown	iples in vere jual vn
Param- eter code	Property or constituent	Number of samples	Average annual sampling frequency	Number of sample years	Maximum	Minimum	Mean	Standard deviation	75	50 (Median)	25
	Otter Tail River below Orwell Dam near Fergus Falls, Minn., gaging station 05046000, October 12, 1960, through August 24, 1995	r Fergus Fal	ls, Minn., ga	ging statio	n 05046000,	October 12, 1	1960, throu	igh August 24,	1995		
09000	Discharge (cubic feet per second)	41	ŀ	ł	1.220	82	869	313	911	289	449
00600	Hardness, total (mg/L as CaCO ₂)	39	3.5	=	260	190	212	16	220	210	200
00030	Sodium, dissolved (mg/L as Na)	39	3.5	Ξ	11	6.5	8.6	1.1	9.2	8.3	7.9
00945	Sulfate, dissolved (mg/L as SO_4)	41	3.7	Ξ	32	9.3	17	5.6	20	16	12
00940	Chloride, dissolved (mg/L as Cl)	41	3.7	11	14	2.7	8.3	2.9	10	9.0	6.9
70301	Dissolved solids, calculated, sum of constituents (mg/L)	36	3.3	11	290	214	238	18	250	235	227
	Bois de Sioux River near White R	ock, S. Dak	White Rock, S. Dak., gaging station 05050000,	ion 05050(00, October	30, 1963, thro	ough Nove	, October 30, 1963, through November 2, 1995			
09000	Discharge (cubic feet per second)	15	1	ł	698	0.20	168	289	180	13	1.0
00600	Hardness, total (mg/L as CaCO ₃)	15	3.0	S	1,600	350	693	330	720	580	480
00630	Sodium, dissolved (mg/L as Na)	15	3.0	5	140	25	63	33	92	55	40
00945	Sulfate, dissolved (mg/L as SO_4)	20	3.3	9	1,400	200	510	280	009	460	340
00940	Chloride, dissolved (mg/L as Cl)	15	3.0	S	35	8.9	17	7.7	21	17	10
70301	Dissolved solids, calculated, sum of constituents (mg/L)	15	3.0	5	2,360	487	211	493	1,050	828	684
	Red River of the North at Wa	ahpeton, N.	th at Wahpeton, N. Dak., gaging station 05051500, May 2, 1973, through July 15, 1999	station 05	051500, May	, 2, 1973, thro	ugh July 1	15, 1999			
09000	Discharge (cubic feet per second)	53	ł	1	11,000	35	1,470	2,170	1,520	511	291
00600	Hardness, total (mg/L as $CaCO_3$)	53	2.0	27	390	110	240	47	270	230	210
00630	Sodium, dissolved (mg/L as Na)	53	2.0	27	33	4.5	13	5.1	16	13	11
00945	Sulfate, dissolved (mg/L as SO_4)	53	2.0	27	230	15	70	48	95	49	32
00940	Chloride, dissolved (mg/L as Cl)	53	2.0	27	22	1.7	10	4.3	13	11	7.0
70301	Dissolved solids, calculated, sum of constituents (mg/L)	53	2.0	27	563	154	297	70	336	292	243
	Red River of the North at Hickson, N.	ı, N. Dak., g	Dak., gaging station 05051522,	05051522,	November 3	. November 3, 1975, through September 22, 1999	igh Septen	nber 22, 1999			
09000	Discharge (cubic feet per second)	116	1	ŀ	12,000	3.0	1,010	1,830	1,000	486	239
00600	Hardness, total (mg/L as $CaCO_3$)	116	4.6	25	800	92	270	80	300	260	230
00630	Sodium, dissolved (mg/L as Na)	116	4.6	25	92	8.9	16	6.7	19	15	11
00945	Sulfate, dissolved (mg/L as SO_4)	116	4.6	25	340	5.4	80	09	110	99	34
00940	Chloride, dissolved (mg/L as Cl)	116	4.6	25	44	1.0	11	5.7	13	8.6	9.7
70301	Dissolved solids, calculated, sum of constituents (mg/L)	112	4.5	25	1,150	146	339	121	382	316	271

Table 1. Statistical summaries of selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

						Descriptive statistics	statistics		Percei wh les	Percentage of samples in which values were less than or equal to those shown	ples in ere ıal
Param- eter code	Property or constituent	Number of samples	Average annual sampling frequency	Number of sample years	Maximum	Minimum	Mean	Standard deviation	75	50 (Median)	25
	Wild Rice River near Abercrombie, N. Dak., gaging station 05053000, June 20, 1966, through September 3, 1999	bie, N. Dak	., gaging sta	tion 050530	00, June 20,	1966, throug	h Septemk	er 3, 1999			
09000	Discharge (cubic feet per second)	277	1	ł	9,250	0.01	217	895	71	11	1.5
00600	Hardness, total (mg/L as CaCO ₃)	277	8.1	34	1,300	51	510	250	620	490	330
00630		277	8.1	34	420	5.3	120	77	160	100	09
00945	Sulfate, dissolved (mg/L as SO_4)	240	7.1	34	1,200	11	380	220	200	360	210
00940	Chloride, dissolved (mg/L as Cl)	224	9.9	34	180	2.3	46	31	62	38	23
70301	Dissolved solids, calculated, sum of constituents (mg/L)	224	9.9	34	2,660	9/	926	492	1,200	874	536
	Red River of the North at F	argo, N. Da	rth at Fargo, N. Dak., gaging station 05054000, May 16, 1949, through July 13, 1999	ation 05054	,000, May 16	, 1949, throug	jh July 13,	1999			
09000	Discharge (cubic feet per second)	502	1	1	25,800	0	1,210	2,450	1,020	450	192
00600		502	11.4	4	420	85	250	50	280	250	220
00630		499	11.6	43	43	5.2	15	5.5	18	14	11
00945	Sulfate, dissolved (mg/L as SO_4)	438	10.0	4	270	13	73	44	66	09	38
00940	Chloride, dissolved (mg/L as Cl)	237	5.4	4	39	0.01	7.0	4.5	8.0	6.2	4.6
70301	Dissolved solids, calculated, sum of constituents (mg/L)	235	5.5	43	809	130	316	77	362	301	270
	Red River of the North below Fa	rgo, N. Dak	elow Fargo, N. Dak., gaging station 05054020, July 16, 1969, through September 16, 1986	tion 050540	20, July 16,	1969, througl	ո Septemb	er 16, 1986			
09000	Discharge (cubic feet per second) ¹	180	1	ŀ	17,300	2.0	705	1,520	716	336	162
00600		180	10.0	18	510	120	260	48	290	260	230
00630	Sodium, dissolved (mg/L as Na)	149	8.3	18	110	8.9	24	19	24	20	15
00945	Sulfate, dissolved (mg/L as SO_4)	180	10.0	18	330	19	83	51	100	69	49
00940	Chloride, dissolved (mg/L as Cl)	168	9.3	18	96	4.4	15	13	14	11	8.7
70301	Dissolved solids, calculated, sum of constituents (mg/L)	134	8.9	15	741	170	357	104	396	334	291
	Sheyenne River above Harv	ey, N. Dak.,	ve Harvey, N. Dak., gaging station 05054500, April 17	ion 0505450	10, April 17, 1	, 1972, through August 25, 1999	August 2	5, 1999			
09000	Discharge (cubic feet per second)	179	ŀ	ł	069	0.19	22	49	11	3.2	1.2
00600	Hardness, total (mg/L as $CaCO_3$)	179	6.4	28	550	58	190	98	240	180	140
00630	Sodium, dissolved (mg/L as Na)	179	6.4	28	480	20	240	92	300	250	180
00945		179	6.4	28	260	37	220	78	250	210	170
00940		179	6.4	28	54	2.2	17	8.9	21	17	4
70301	Dissolved solids, calculated, sum of constituents (mg/L)	178	6.4	78	1,610	140	863	247	1,000	892	791

Table 1. Statistical summaries of selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

						Descriptive statistics	statistics		Perce wh les	Percentage of samples in which values were less than or equal to those shown	ples in rere ual
Param- eter code	Property or constituent	Number of samples	Average annual sampling frequency	Number of sample years	Maximum Minimum	Minimum	Mean	Standard deviation	75	50 (Median)	25
	Sheyenne River near Warwii	:k, N. Dak.,	Warwick, N. Dak., gaging station 05056000, January 8, 1951, through August 5, 1999	on 0505600	0, January 8	, 1951, throu	gh August	t 5, 1999			
09000	Discharge (cubic feet per second)	530	ł	ł	2,310	0.10	66	272	62	15	3.2
00600	Hardness, total (mg/L as $CaCO_3$)	530	11.5	46	570	71	240	71	280	240	200
00630	Sodium, dissolved (mg/L as Na)	530	11.5	46	230	10	73	40	100	89	40
00945	Sulfate, dissolved (mg/L as SO_4)	277	6.2	45	230	28	76	4	120	88	09
00940	Chloride, dissolved (mg/L as Cl)	247	5.5	45	37	9.0	12	5.7	17	12	8.2
70301	Dissolved solids, calculated, sum of constituents (mg/L)	230	5.3	43	905	136	460	160	588	464	328
	Sheyenne River near Cooperstown, N. Dak., gaging station 05057000, October 11, 1959, through July 20, 1999	own, N. Da	ık., gaging st	ation 05057	7000, Octobe	r 11, 1959, th	rough Jul	y 20, 1999			
09000	Discharge (cubic feet per second)	376	1	ł	4,150	0.02	206	510	156	31	12
00600	Hardness, total (mg/L as $CaCO_3$)	367	9.2	40	089	74	290	87	340	300	250
00630	Sodium, dissolved (mg/L as Na)	367	9.2	40	920	10	83	52	76	83	63
00945	Sulfate, dissolved (mg/L as SO_4)	320	8.0	40	360	21	140	4	170	140	120
00940	Chloride, dissolved (mg/L as Cl)	315	7.7	41	39	0.1	16	5.7	19	16	12
70301	Dissolved solids, calculated, sum of constituents (mg/L)	306	7.6	40	1,360	122	552	167	648	582	476
	Baldhill Creek near Dazey, N. Dak., gaging station 05057200, May 2, 1972, through July 20, 1999	ey, N. Dak.	, gaging stat	ion 050572	00, May 2, 19	72, through .	July 20, 19	660			
09000	Discharge (cubic feet per second)	96	ŀ	ŀ	2,450	0.01	171	389	122	5.8	1.3
00600	Hardness, total (mg/L as CaCO ₃)	98	3.2	27	099	81	290	120	360	300	200
00630	Sodium, dissolved (mg/L as Na)	98	3.2	27	150	4.7	55	36	75	28	22
00945	Sulfate, dissolved (mg/L as SO_4)	98	3.2	27	300	17	160	72	210	170	110
00940	Chloride, dissolved (mg/L as Cl)	96	3.4	28	51	2.1	16	11	20	15	8.0
70301	Dissolved solids, calculated, sum of constituents (mg/L)	98	3.2	27	1,020	124	492	213	628	520	318
	Sheyenne River below Baldh	ill Dam, N.	v Baldhill Dam, N. Dak., gaging station 05058000, June 5, 1959, through July 14, 1999	y station 05	058000, June	5, 1959, thro	ough July	14, 1999			
09000	Discharge (cubic feet per second)	122	ŀ	ŀ	4,710	3.6	375	824	255	40	13
00600	Hardness, total (mg/L as CaCO ₃)	112	3.3	34	380	96	230	57	260	220	200
00630	Sodium, dissolved (mg/L as Na)	112	3.3	34	120	20	49	19	9/	49	51
00945	Sulfate, dissolved (mg/L as SO_4)	112	3.3	34	240	48	120	39	140	120	94
00940	Chloride, dissolved (mg/L as Cl)	122	3.5	35	26	4.7	14	4.4	17	13	11
70301	Dissolved solids, calculated, sum of constituents (mg/L)	112	3.3	34	741	175	440	112	200	422	364

Table 1. Statistical summaries of selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

						Descriptive statistics	statistics		Perce wl le	Percentage of samples in which values were less than or equal to those shown	ples in ere ual
Param- eter code	Property or constituent	Number of samples	Average annual sampling frequency	Number of sample years	Maximum	Minimum	Mean	Standard deviation	25	50 (Median)	25
	Sheyenne River at Valley	City, N. Da	k., gaging st	ation 05058	500, May 3,	Valley City, N. Dak., gaging station 05058500, May 3, 1972, through April 6, 1999	h April 6,	1999			
09000	Discharge (cubic feet per second) ¹	25	ŀ	ŀ	3,520	9.1	808	1,090	1,230	335	15
00600		27	1.3	21	390	140	250	62	280	240	200
00630		27	1.3	21	100	24	63	19	74	63	51
00945		27	1.3	21	260	81	140	41	160	130	120
00940		27	1.3	21	24	5.1	15	4.7	20	15	12
70301	Dissolved solids, calculated, sum of constituents (mg/L)	27	1.3	21	289	244	457	118	515	455	382
	Sheyenne River at Lisbon, N. Dak., gaging station 05058700, August 2, 1956, through July 21, 1999	n, N. Dak., į	gaging statio	n 05058700	, August 2, 1	956, through	July 21, 1	666			
09000	Discharge (cubic feet per second)	609	ŀ	ŀ	4,190	0.40	259	552	197	89	59
00600		611	13.9	4	530	100	270	49	320	270	230
00630		611	13.9	4	260	13	9/	31	91	9/	59
00945	Sulfate, dissolved (mg/L as SO_4)	547	12.4	4	450	39	160	99	200	160	130
00940	Chloride, dissolved (mg/L as Cl)	333	7.6	4	110	8.0	30	15	38	26	20
70301	Dissolved solids, calculated, sum of constituents (mg/L)	330	7.5	4	1,040	192	531	137	621	520	447
	Sheyenne River near Kindred,	d, N. Dak.,	gaging statio	on 0505900(), May 4, 197	N. Dak., gaging station 05059000, May 4, 1972, through September 2, 1999	eptember	2, 1999			
09000	Discharge (cubic feet per second)	222	1	ł	4,070	19	366	<i>L</i> 69	292	118	50
00600	Hardness, total (mg/L as $CaCO_3$)	222	7.9	28	430	120	300	61	330	310	270
00630	Sodium, dissolved (mg/L as Na)	222	7.9	28	110	9.5	49	18	9/	49	54
00945	Sulfate, dissolved (mg/L as SO ₄)	222	7.9	28	290	50	150	39	170	150	130
00940	_	222	7.9	28	74	5.7	28	12	35	26	20
70301	Dissolved solids, calculated, sum of constituents (mg/L)	222	7.9	28	9//	191	523	107	290	531	480
	Sheyenne River at West Fargo, N.		nging station	05059500,	September 1	Dak., gaging station 05059500, September 16, 1969, through August 31, 1999	ugh Augu:	st 31, 1999			
09000	Discharge (cubic feet per second)	28	1	1	3,050	5.9	447	889	562	104	99
00600		28	2.1	28	400	130	280	75	340	290	220
00630	Sodium, dissolved (mg/L as Na)	58	2.1	28	94	23	57	17	69	09	46
00945	Sulfate, dissolved (mg/L as SO ₄)	28	2.1	28	230	9.8	130	44	170	140	100
00940	Chloride, dissolved (mg/L as Cl)	28	2.1	28	57	7.8	27	12	36	27	18
70301	Dissolved solids, calculated, sum of constituents (mg/L)	28	2.1	28	701	219	474	126	571	512	401

Table 1. Statistical summaries of selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

						Descriptive statistics	statistics		Percei wh les	Percentage of samples in which values were less than or equal to those shown	ples in rere ual
Param- eter code	Property or constituent	Number of samples	Average annual sampling frequency	Number of sample years	Maximum	Maximum Minimum	Mean	Standard deviation	75	50 (Median)	25
	Maple River near Ender	lin, N. Dak.	r Enderlin, N. Dak., gaging station 05059700, May 3, 1972, through July 22, 1999	ion 050597	00, May 3, 19	72, through	July 22, 19	66			
09000	Discharge (cubic feet per second)	79	1	1	3,500	1.3	226	545	130	5.4	2.9
00600	Hardness, total (mg/L as CaCO ₃)	79	2.8	28	910	100	550	220	720	640	440
00630	Sodium, dissolved (mg/L as Na)	79	2.8	28	180	12	92	36	94	79	09
00945	Sulfate, dissolved (mg/L as SO_4)	79	2.8	28	650	42	370	160	480	450	260
00940	Chloride, dissolved (mg/L as CI)	79	2.8	28	140	2.5	50	30	65	47	27
70301	Dissolved solids, calculated, sum of constituents (mg/L)	62	2.8	28	1,540	176	881	348	1,120	1,010	700
	Maple River below Maplet	on, N. Dak.	Mapleton, N. Dak., gaging station 05060100, March 18, 1995, through July 19, 1999	ion 050601	30, March 18	8, 1995, throu	gh July 19	, 1999			
09000	Discharge (cubic feet per second)	6	ŀ	1	6,620	0.79	1,410	2,140	1,520	480	39
00600	Hardness, total (mg/L as CaCO ₃)	6	1.8	5	530	140	350	150	490	390	200
00630	Sodium, dissolved (mg/L as Na)	6	1.8	5	110	13	53	32	73	46	28
00945	Sulfate, dissolved (mg/L as SO_4)	6	1.8	5	440	73	250	140	400	250	130
00940	Chloride, dissolved (mg/L as Cl)	6	1.8	S	59	7.4	30	18	46	22	17
70301	Dissolved solids, calculated, sum of constituents (mg/L)	6	1.8	5	626	204	580	281	837	599	329
	Rush River at Amenia	, N. Dak., g	Amenia, N. Dak., gaging station 05060500, May 3, 1972, through July 15, 1999	n 05060500	May 3, 1972	., through Ju	ly 15, 1999				
09000	Discharge (cubic feet per second)	48	ŀ	1	2,310	0.01	141	397	70	8.8	0.95
00600	Hardness, total (mg/L as CaCO ₃)	48	1.7	28	770	100	420	200	580	480	210
00630	Sodium, dissolved (mg/L as Na)	48	1.7	28	200	7	52	39	70	50	19
00945	Sulfate, dissolved (mg/L as SO_4)	48	1.7	28	029	37	270	180	370	250	110
00940	Chloride, dissolved (mg/L as Cl)	48	1.7	28	120	2.3	25	21	34	20	8.6
70301	Dissolved solids, calculated, sum of constituents (mg/L)	48	1.7	28	1,390	146	655	336	998	700	308
	Buffalo River near Dilwor	th, Minn., g	Dilworth, Minn., gaging station 05062000, April 10, 1962, through March 12, 1991	n 05062000	, April 10, 19	62, through I	March 12,	1991			
09000	Discharge (cubic feet per second)	12	ŀ	1	5,250	6.1	969	1,520	98	48	22
00600	Hardness, total (mg/L as CaCO ₃)	11	1.4	8	009	120	380	140	440	420	340
00630	Sodium, dissolved (mg/L as Na)	11	1.4	8	27	4.5	17	9.9	20	18	15
00945	Sulfate, dissolved (mg/L as SO ₄)	11	1.4	∞	230	36	130	09	150	120	95
00940	Chloride, dissolved (mg/L as Cl)	11	1.4	%	15	0	0.9	3.9	7.4	6.4	3.6
70301	Dissolved solids, calculated, sum of constituents (mg/L)	Π	1.4	∞	718	156	474	168	547	208	420

Table 1. Statistical summaries of selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

						Descriptive statistics	statistics		Percei wh les	Percentage of samples in which values were less than or equal to those shown	ples in rere ual
Param- eter code	Property or constituent	Number of samples	Average annual sampling frequency	Number of sample years	Maximum	Minimum	Mean	Standard deviation	75	50 (Median)	25
	Elm River near Kelso, N. Dak., gaging station 05062200, February 25, 1981, through March 31, 1988	Jak., gagin	g station 050)62200, Feb	ruary 25, 198	1, through N	larch 31, 1	886			
09000	Discharge (cubic feet per second) ²	11	ł	1	705	0.01	182	214	283	140	3.35
00600	Hardness, total (mg/L as $CaCO_3$)	11	1.4	~	450	120	230	120	280	170	160
00630		11	1.4	∞	59	5.9	23	18	32	16	11
00945		11	1.4	~	210	35	66	29	140	70	48
00940	Chloride, dissolved (mg/L as Cl)	11	1.4	8	41	4.5	17	11	22	13	9.2
70301	Dissolved solids, calculated, sum of constituents (mg/L)	111	1.4	8	999	182	343	179	414	260	232
	Wild Rice River at Twin Valley, Minn., gaging station 05062500, September 21, 1966, through April 30, 1997	y, Minn., g	aging statior	າ 05062500,	September	21, 1966, thro	ugh April	30, 1997			
09000	Discharge (cubic feet per second)	173	1	ł	4,330	2.8	348	899	372	66	43
00600		171	14.2	12	480	110	270	53	300	260	240
00630		170	14.2	12	31	2.4	10	4.7	13	9.4	7.3
00945	Sulfate, dissolved (mg/L as SO_4)	170	14.2	12	85	10	34	14	42	31	23
00940	Chloride, dissolved (mg/L as Cl)	170	14.2	12	20	9.0	4.5	4.2	4.7	3.8	2.8
70301	Dissolved solids, calculated, sum of constituents (mg/L)	170	14.2	12	570	147	305	49	338	294	261
	Wid Rice River at Hendrul	n, Minn., g	Hendrum, Minn., gaging station 05064000, October 1,	n 05064000,		1962, through June 22, 1994	June 22, '	1994			
09000	Discharge (cubic feet per second)	118	ŀ	1	9,110	0.09	444	1,240	222	77	28
00600		7	1.2	9	490	170	310	100	360	290	260
00630	Sodium, dissolved (mg/L as Na)	7	1.2	9	31	5.2	15	0.6	19	10	0.6
00945	Sulfate, dissolved (mg/L as SO ₄)	~	1.1	7	85	28	46	17	52	48	39
00940	Chloride, dissolved (mg/L as Cl)	118	11.8	10	31	0	5.1	3.6	5.8	4.2	3.4
70301	Dissolved solids, calculated, sum of constituents (mg/L)	7	1.2	9	593	217	366	126	422	326	293
	Red River of the North at Hals	tad, Minn.,	at Halstad, Minn., gaging station 05064500, July 8, 1961, through September 21, 1999	on 0506450	0, July 8, 196	31, through S	eptember	21, 1999			
09000	Discharge (cubic feet per second)	163	ł	ł	66,200	109	3,200	6,750	2,900	1,000	471
00600	Hardness, total (mg/L as $CaCO_3$)	163	4.7	35	480	120	290	65	330	290	250
00630	Sodium, dissolved (mg/L as Na)	163	4.7	35	77	7.6	31	13	38	30	22
00945	Sulfate, dissolved (mg/L as SO ₄)	163	4.7	35	240	36	110	42	130	100	80
00940	-	163	4.7	35	52	4	18	8.4	22	16	12
70301	Dissolved solids, calculated, sum of constituents (mg/L)	163	4.7	35	843	164	410	104	474	404	343

Table 1. Statistical summaries of selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

						Descriptive statistics	statistics		Perce wh le le	Percentage of samples in which values were less than or equal to those shown	ples in rere ual
Param- eter code	Property or constituent	Number of samples	Average annual sampling frequency	Number of sample years	Maximum	Minimum	Mean	Standard deviation	75	50 (Median)	82
	Goose River at Hillsboro, N.	. Dak., gagii	ng station 05	066500, Se	otember 15,	oro, N. Dak., gaging station 05066500, September 15, 1969, through August 20, 1999	h August 2	0, 1999			
09000	Discharge (cubic feet per second)	93	ł	1	5,360	0.07	409	086	221	18	3.8
00600	Hardness, total (mg/L as $CaCO_3$)	93	3.0	31	930	120	520	210	099	550	360
00630	Sodium, dissolved (mg/L as Na)	93	3.0	31	330	8.5	86	71	120	84	54
00945	Sulfate, dissolved (mg/L as SO_4)	93	3.0	31	800	49	370	170	480	400	240
00940	Chloride, dissolved (mg/L as Cl)	93	3.0	31	310	5.4	70	63	06	50	24
70301	Dissolved solids, calculated, sum of constituents (mg/L)	93	3.0	31	2,060	184	897	412	1,100	929	585
	Sand Hill River near Climax, Minn., gaging station 05069000, November 1,	Minn., gagi	ng station 09	5069000, No	vember 1, 1	, 1966, through December 9, 1991	Decembe	r 9, 1991			
09000	Discharge (cubic feet per second)	2	1	1	18	10	14	;	1	1	1
00600	Hardness, total (mg/L as CaCO ₃)	2	1.0	2	410	360	380	ŀ	1	1	1
00630	Sodium, dissolved (mg/L as Na)	2	1.0	2	19	41	16	1	1	1	1
00945	Sulfate, dissolved (mg/L as SO ₄)	2	1.0	2	78	69	74	1	1	1	1
00940	Chloride, dissolved (mg/L as Cl)	2	1.0	2	15	13	14	1	1	1	1
70301	Dissolved solids, calculated, sum of constituents (mg/L)	-	1.0	_	435	1	1	ł	1	1	ŀ
	Clearwater River at Red Lake	Falls, Min	ı., gaging sta	ıtion 05078	500, October	ed Lake Falls, Minn., gaging station 05078500, October 25, 1963, through July 18, 1995	yul dguo	, 18, 1995			
09000	Discharge (cubic feet per second)	12	1	1	1,300	40	452	481	721	274	54
00600	Hardness, total (mg/L as $CaCO_3$)	12	2.4	5	310	120	250	56	300		230
00630	Sodium, dissolved (mg/L as Na)	12	2.4	5	111	3.4	7.9	1.9	9.0		7.1
00945	Sulfate, dissolved (mg/L as SO ₄)	12	2.4	5	74	16	40	19	48	•	28
00940	Chloride, dissolved (mg/L as Cl)	12	2.4	5	7.5	2.8	4.5	1.3	5.0		3.8
70301	Dissolved solids, calculated, sum of constituents (mg/L)	12	2.4	5	346	141	290	28	334	297	268
	Red Lake River at Crooks	Crookston, Minn.,	gaging stati	on 0507900	0, April 11, 1	, gaging station 05079000, April 11, 1962, through April 22, 1997	April 22,	1997			
09000	Discharge (cubic feet per second)	168	1	ł	15,000	70	1,420	1,900	1,620	786	514
00600	Hardness, total (mg/L as $CaCO_3$)	167	5.4	31	390	100	210	43	240	210	180
00630	Sodium, dissolved (mg/L as Na)	168	5.4	31	15	2.3	5.8	2.4	9.9	5.1	4.3
00945	Sulfate, dissolved (mg/L as SO_4)	168	5.4	31	120	7.0	37	24	20	32	18
00940	Chloride, dissolved (mg/L as Cl)	168	5.4	31	12	0	4.6	2.4	5.6	3.9	3.0
70301	Dissolved solids, calculated, sum of constituents (mg/L)	167	5.4	31	474	89	237	53	270	232	202

Table 1. Statistical summaries of selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

						Descriptive statistics	statistics		Perce wl le	Percentage of samples in which values were less than or equal to those shown	iples in vere jual
Param- eter code	Property or constituent	Number of samples	Average annual sampling frequency	Number of sample years	Maximum	Minimum	Mean	Standard deviation	75	50 (Median)	25
	Red River of the North at Grand	Forks, N. C	t Grand Forks, N. Dak., gaging station 05082500, June 22, 1949, through August 23, 1999	station 050	82500, June	22, 1949, thro	ough Augu	st 23, 1999			
09000	Discharge (cubic feet per second)	532	1	ł	105,000	156	5,620	9,900	5,460	2,120	1,160
00600		532	11.8	45	830	120	250	. 67	280	250	220
00630	-	531	11.8	45	43	2.9	18	6.4	20	17	14
00945		464	10.3	45	200	18	74	30	95	70	51
00940	-	251	5.6	45	34	0.1	10	5.0	12	9.1	6.9
70301	Dissolved solids, calculated, sum of constituents (mg/L)	248	5.5	45	1,890	166	327	121	367	313	277
	Turtle River at Manvel, N	I. Dak., gaç	anvel, N. Dak., gaging station 05083000, October 15, 1971, through April 13, 1990	5083000, 0	ctober 15, 19	371, through	April 13, 1	066			
09000	Discharge (cubic feet per second) ¹	39	1	ŀ	1,450	0.20	217	340	338	51	8.4
00600		39	3.0	13	1,800	210	290	330	730	520	340
00630		39	3.0	13	2,100	63	390	380	460	280	180
00945	Sulfate, dissolved (mg/L as SO_4)	39	3.0	13	1,600	100	390	270	420	330	240
00940	Chloride, dissolved (mg/L as Cl)	39	3.0	13	3,600	68	610	650	730	430	280
70301	Dissolved solids, calculated, sum of constituents (mg/L)	39	3.0	13	8,120	449	1,750	1,410	2,020	1,370	927
	Forest River at Minto, N.	Dak., gagiı	linto, N. Dak., gaging station 05085000, October 12, 1971, through August 16, 1999	385000, Oct	tober 12, 197	1, through A	ugust 16, 1	666			
09000	Discharge (cubic feet per second)	91	1	1	6,140	0.10	203	725	49	16	4.6
00600		91	3.1	29	850	110	330	100	370	330	290
00630	Sodium, dissolved (mg/L as Na)	91	3.1	29	170	9	41	19	48	39	32
00945	Sulfate, dissolved (mg/L as SO ₄)	91	3.1	56	290	36	150	50	170	140	120
00940	_	91	3.1	59	270	1.3	32	31	38	24	18
70301	Dissolved solids, calculated, sum of constituents (mg/L)	91	3.1	29	1,370	152	496	157	554	496	428
	Snake River at Warren, N	Ninn., gagir	farren, Minn., gaging station 05085500, September 16, 1953, through July 29, 1955	085500, Se _l	otember 16, '	1953, througl	ո July 29, 1	1955			
09000	Discharge (cubic feet per second)	15	1	1	206	0.10	29	99	17	8.0	5.6
00600		16	5.3	3	440	130	360	68	430	400	320
00630	Sodium, dissolved (mg/L as Na)	16	5.3	3	83	7.4	25	19	28	18	16
00945	Sulfate, dissolved (mg/L as SO ₄)	16	5.3	3	200	57	140	34	150	140	120
00940	Chloride, dissolved (mg/L as Cl)	16	5.3	3	93	0.5	14	23	13	5.8	2.8
70301	Dissolved solids, calculated, sum of constituents (mg/L)	15	7.5	2	684	195	492	126	574	518	438

Table 1. Statistical summaries of selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

						Descriptive statistics	statistics		Percei wh les	Percentage of samples in which values were less than or equal to those shown	ples in ere ıal
Param- eter code	Property or constituent	Number of samples	Average annual sampling frequency	Number of sample years	Maximum	Minimum	Mean	Standard deviation	75	50 (Median)	22
	Middle River at Argyle, Minn., gaging station 05087500, April 12, 1954, through September 24, 1968	Ninn., gagin	g station 050	87500, Apı	il 12, 1954, tl	rough Septe	ember 24, '	1968			
09000	Discharge (cubic feet per second)	23	ł	ł	122	0.10	4	39	65	28	13
00600	Hardness, total (mg/L as $CaCO_3$)	23	7.7	3	470	120	290	81	340	310	240
00630	Sodium, dissolved (mg/L as Na)	23	7.7	3	14	4.3	7.7	2.6	9.6	7.6	5.8
00945	Sulfate, dissolved (mg/L as SO_4)	23	7.7	3	68	25	49	18	78	49	49
00940	Chloride, dissolved (mg/L as Cl)	23	7.7	3	11	0	3.0	2.9	4.5	2.0	1.0
70301	Dissolved solids, calculated, sum of constituents (mg/L)	23	7.7	3	533	180	357	68	424	367	306
	Park River at Grafton, N. Dak., gaging station 05090000, September 22, 1969, through August 16, 1999	ak., gaging	station 0509	0000, Sept	ember 22, 19)69, through /	August 16,	1999			
09000	Discharge (cubic feet per second)	80	1	1	4,840	0.01	274	790	170	0.9	0.78
00600	Hardness, total (mg/L as CaCO ₃)	80	2.7	30	610	120	320	120	410	320	240
00630	Sodium, dissolved (mg/L as Na)	80	2.7	30	370	12	100	69	130	86	46
00945	Sulfate, dissolved (mg/L as SO_4)	80	2.7	30	420	53	210	68	260	210	130
00940	Chloride, dissolved (mg/L as Cl)	80	2.7	30	410	6.2	26	62	130	81	31
70301	Dissolved solids, calculated, sum of constituents (mg/L)	80	2.7	30	1,430	193	999	284	826	718	401
	Red River of the North at Dra	ıyton, N. Da	k., gaging st	ation 0509	2000, May 9,	n at Drayton, N. Dak., gaging station 05092000, May 9, 1972, through August 17, 1999	h August '	17, 1999			
09000	Discharge (cubic feet per second)	55	ł	ł	91,000	169	12,300	17,700	21,300	2,900	1,430
00600	Hardness, total (mg/L as $CaCO_3$)	55	2.0	28	480	120	250	69	290	240	210
00630	Sodium, dissolved (mg/L as Na)	55	2.0	28	130	7.3	39	28	46	30	22
00945	Sulfate, dissolved (mg/L as SO_4)	55	2.0	28	220	35	68	36	120	98	49
00940	Chloride, dissolved (mg/L as Cl)	55	2.0	28	160	4.8	46	39	52	31	20
70301	Dissolved solids, calculated, sum of constituents (mg/L)	55	2.0	28	878	169	386	137	442	367	298
	Pembina River at Neche	, N. Dak., g	aging statio	n 05100000	, May 9, 1972	Neche, N. Dak., gaging station 05100000, May 9, 1972, through August 12, 1999	gust 12, 19	666			
09000	Discharge (cubic feet per second)	53	ŀ	ŀ	10,300	5.6	1,050	1,910	1,100	164	61
00600	Hardness, total (mg/L as $CaCO_3$)	53	1.9	28	570	86	280	110	370	280	200
00630	Sodium, dissolved (mg/L as Na)	53	1.9	28	59	19	39	12	49	41	28
00945	Sulfate, dissolved (mg/L as SO_4)	53	1.9	28	250	99	150	48	190	160	110
00940	Chloride, dissolved (mg/L as Cl)	53	1.9	28	34	3.4	14	6.9	18	14	7.8
70301	Dissolved solids, calculated, sum of constituents (mg/L)	53	1.9	28	761	204	447	144	572	498	318

Table 1. Statistical summaries of selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

						Descriptive statistics	statistics		Perce wl le	Percentage of samples in which values were less than or equal to those shown	oles in ere ial
Param- eter code	Property or constituent	Number of samples	Average annual sampling frequency	Number of sample years	Maximum	Minimum	Mean	Standard deviation	75	50 (Median)	25
	Tongue River at Akra, P	I. Dak., gag	ing station	05101000, 1	Akra, N. Dak., gaging station 05101000, May 11, 1972, through August 12, 1999	through Auç	just 12, 199	66			
09000	Discharge (cubic feet per second)	77	1	1	629	0.02	49	131	38	8.2	2.4
00600		78	2.8	28	350	100	240	99	270	240	200
00630		78	2.8	28	37	11	56	5.6	29	26	22
00945	Sulfate, dissolved (mg/L as SO_4)	78	2.8	28	140	5.6	84	22	76	87	72
00940	Chloride, dissolved (mg/L as Cl)	78	2.8	28	40	2.2	10	4.5	12	9.6	7.8
70301	Dissolved solids, calculated, sum of constituents (mg/L)	78	2.8	28	505	170	339	29	381	342	309
	Red River of the North at Emerson, Manitoba, gaging station 05102500, July 30, 1977, through February 4, 1999	on, Manito	ba, gaging	station 051	02500, July 3	0, 1977, throu	ıgh Februa	ıry 4, 1999			
09000	Discharge (cubic feet per second)	143	ŀ	1	62,800	222	5,200	8,890	4,590	1,780	1,000
00600	Hardness, total (mg/L as $CaCO_3$)	142	6.4	22	200	160	280	57	310	280	250
00930	Sodium, dissolved (mg/L as Na)	142	6.4	22	190	7.5	4	30	50	34	28
00945	Sulfate, dissolved (mg/L as SO_4)	143	6.4	22	230	0.9	26	39	120	94	70
00940	Chloride, dissolved (mg/L as Cl)	143	6.4	22	240	8.6	50	43	62	35	24
70301	Dissolved solids, calculated, sum of constituents (mg/L)	142	6.4	22	1,060	197	435	131	477	413	355

¹Discharge is combined instantaneous and daily mean streamflow.

²Discharge is instantaneous streamflow.

Figure 3. Linear and lowess relations between sulfate and streamflow for the Red River of the North at Grand Forks, North Dakota, gaging station.

where

log is the base-10 logarithm;

C is concentration, in milligrams per liter;

Q is streamflow, in cubic feet per second;

 $a_0, ..., a_3$ are regression coefficients, where a_k is the value of $\log C$ when $\log Q = b_k$; and

 $b_0 < b_1 < b_2 < b_3$ are fixed values for $\log Q$, indicating intervals for which the linear equations are used to compute $\log C$.

The values of b_1 and b_2 correspond to the two breakpoints at which slope changes occur and the values of b_0 and b_3 correspond to the minimum and maximum values of $\log Q$ for which the regression equation should be used to compute concentration.

If $\log Q$ is less than b_0 or greater than b_3 , the regression equation should not be used to estimate concentration because the equation should not be used to extrapolate too far outside of the data used to fit the equation. For example, in the lowess fit in figure 3, b_0 might be two and b_3 might be five, and the regression equation could be used with confidence for streamflow ranging from 100 to 100,000 cubic feet per second.

The second equation used to model the relation between concentration and streamflow was a multiple linear regression model that incorporated month and streamflow as explanatory variables to allow the intercept and/or the slope to change depending upon the time of year. This model will be referred to as a linear model with seasonal coefficients and can be expressed as:

$$\log C = a(m) + b(m)\log Q \tag{2}$$

where

a(m) is the intercept for month m;

m = 1, 2, ..., 12 designates the month, with m = 1 corresponding to January and m = 12 to December; and

b(m) is the slope for month m.

Because the historical data for most gaging stations were not sufficient to estimate a separate intercept and slope for every month, the coefficients were expressed as linear combinations of various trigonometric functions of the month (Helsel and Hirsch, 1992).

The intercept and the slope were allowed to take different forms depending upon the constituent or gaging station being analyzed. If no seasonality was detected in the intercept or the slope, the regression coefficients in equation 2 would be:

$$a(m) = a_o$$

and

$$b(m) = b_o$$

where

 a_o and b_o are regression coefficients.

If significant seasonality was detected in the slope but not the intercept, the regression coefficient in equation 2 would be:

$$a(m) = a_o$$

and

$$b(m) = b_o + b_1 \cos\left(\frac{2\pi m}{12}\right) + b_2 \sin\left(\frac{2\pi m}{12}\right)$$

where

 a_o , b_o , b_1 , and b_2 are regression coefficients.

If seasonality was detected in the intercept and the slope, the regression coefficient in equation 2 would be:

$$a(m) = a_o + a_1 \cos\left(\frac{2\pi m}{12}\right) + a_2 \sin\left(\frac{2\pi m}{12}\right)$$

and

$$b(m) = b_o + b_1 \cos\left(\frac{2\pi m}{12}\right) + b_2 \sin\left(\frac{2\pi m}{12}\right)$$

where

 a_o , $\,a_1$, $\,a_2$, $\,b_o$, $\,b_1$, and $\,b_2\,$ are regression coefficients.

If seasonality was detected in the intercept but not the slope, the regression coefficient in equation 2 would be:

$$a_o + a_1 \cos\left(\frac{2\pi m}{12}\right) + a_2 \sin\left(pd\frac{2\pi m}{12}\right) + a_3 \cos\left(\frac{2\pi m}{6}\right) + a_4 \sin\left(\frac{2\pi m}{6}\right)$$

and

$$b(m) = b_0$$

where

 $a_o, ..., a_4, b_o$ are regression coefficients.

The piece-wise linear model and the linear model with the various forms for the intercept and slope were fitted using available data for 1931-99. Regression equations could not be developed for the Maple River below Mapleton, N. Dak., (05060100); the Buffalo River near Dilworth, Minn., (05062000); the Elm River near Kelso, N. Dak., (05062200); and the Sand Hill River near Climax, Minn., (05069000) gaging stations because of too few available data. The Otter Tail River below Orwell Dam near Fergus Falls, Minn., (05046000) gaging station had eight data pairs sampled during the 1960's that possibly were of a different data population or in error. A scatter plot of the data showed the eight data pairs grouped separately from the rest of the data. The eight data pairs were removed prior to regression runs. Instantaneous streamflow and daily mean streamflow were combined to complete the discharge records at the Red River of the North below Fargo, N. Dak., (05054020); the Sheyenne River at Valley City,

N. Dak., (05058500); and the Turtle River at Manvel, N. Dak., (05083000) gaging stations.

Each of the models defined by equations 1 and 2 can be expressed as a multiple linear regression model with $\log C$ as the response variable and various functions of $\log Q$ and month as explanatory variables. The regression coefficients were estimated using the ordinary-least-squares multiple linear regression. The best equation for each water-quality constituent concentration at each gaging station was selected based on review of the residual plots, coefficient of determination, residual standard error of the regression, p-value, and Fstatistic. The residual plots were evaluated to determine if the regression resulted in equal variance of the residuals for the full range of predicted values. Maximization of the coefficient of determination and F-statistic and minimization of the residual standard error of the regression and p-value were desired for the best equation. A step-wise approach was used for equations 1 and 2 for each water-quality constituent concentration at each gaging station, and the best equation was selected based on residual variance and maximization and minimization of the various regression statistics. If no clear choice could be made, the simplest equation form was selected.

Final regression equations developed between waterquality constituent concentrations and streamflow for each gaging station are listed in table 2. The number of data pairs used in the equation development, p-value, coefficient of determination (R²), residual standard error, and range of standard error of actual concentration also are listed in table 2. The p-value is the probability that the tabulated F-statistic is greater than the calculated F-statistic and is desired to be as close to zero as possible. The F-statistic shows how well the regression equation explains the variance. The p-values ranged from zero to 0.244. The coefficient of determination is the percentage of the total variation in the base-10 logarithm of water-quality constituent concentration that is explained by the regression equation. Coefficient of determination ranged from 0.03 to 0.97. The residual standard error is the estimated standard deviation of the residuals (the deviations of actual logtransformed concentrations from fitted log-transformed concentrations). The residual standard error ranged from 0.019 to 0.310.

A small standard error indicates that the difference between the fitted and actual values of log-transformed concentration tend to be small. In particular, about 70 percent of the fitted values of log-transformed concentrations will be within plus or minus one standard error of the actual values. Equivalently, about 70 percent of the fitted values for untransformed concentrations (obtained by taking the anti-log of the fitted values for log-transformed concentrations) will satisfy the following inequality:

$$10^{-s} - 1 < \frac{\hat{c} - c}{c} < 10^{s} - 1 \tag{3}$$

where

- s is the residual standard error of the regression equation for log-transformed concentration,
- ê is the fitted concentration using the regression equation, and
- c is the actual concentration.

Thus, about 70 percent of the fitted concentrations will be within $100(10^{-s}-1)$ percent and $100(10^{s}-1)$ percent of the actual concentrations. The standard error of the estimate, as a percentage of the actual concentration, is given in table 2 for the cases when concentration is underestimated, $100(10^{-s}-1)$, or overestimated, $100(10^{s}-1)$.

Because the range of standard error of actual concentration shows how far off the model predictive values can be from the fitted values, it is desirable to have a narrow range of standard error of actual concentration. Ranges of the standard error of actual concentration vary considerably by station and by waterquality constituent (table 2).

Equation Applications and Limitations

Because the equations in table 2 were developed by either using mean daily streamflow or by using a combination of instantaneous and mean daily streamflow and because of the possible equation usage, water-quality load calculations may be determined various ways. Equations will have very poor predictive ability and large error when using regression equations with very low R² (less than 0.20), with high p-values, with high residual standard error values, and with a broad range of standard error of actual concentration (such as -40 to 68). An alternative to such poor regressions would be to use the mean value (table 1) for the water-quality constituent being considered.

The following equation may be used to obtain monthly flow-weighted water-quality concentrations (FWC):

$$FWC = \frac{\sum_{i=1}^{n} c_i q_i}{\sum_{i=1}^{n} q_i} \times BCF$$
 (4)

Table 2. Relations between selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.

[log, base-10 logarithm; $CaCO_3$, hardness concentration, in milligrams per liter; C_1 , $\cos(2\pi \, \text{month}/12)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; S_1 , $\sin(2\pi \, \text{month}/12)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; Q, streamflow, in cubic feet per second; S_1 , S_2 , S_3 , S_4 , S_4 , S_4 , S_4 , S_4 , S_4 , S_5 , S_4 , S_5 ,

		Number	In ba	ase-10 logarit	hm	Range of
Equation		of data pairs	p-value	Coefficient of determi- nation (R ²)	Residual standard error	standard error of actual concentration (percent)
Otter Tail Rive	er below Orwell Dam near Fergus Range of fit: $208 \le Q \le 1,220$ (tion 05046000		
$logCaCO_3 = 2.37 - (0.015 - 0.006C_1 - 0.006C_1)$		29	3.18 x 10 ⁻⁴	0.52	0.019	-4.2 to 4.4
$Na = 130Q^{-0.445}$ $Na = 1.68Q^{0.262}$ $Na = 1,580Q^{-0.782}$ $Na = 1.68Q^{0.229}$ $Na = 189Q^{-0.452}$	$208 \le Q \le 468$ $468 < Q \le 708$ $708 < Q \le 871$ $871 < Q \le 1,020$ $1,020 < Q \le 1,220$	27	5.05 x 10 ⁻⁷	0.81	0.022	-4.9 to 5.1
$\log SO_4 = 0.887 + (0.084 - 0.024C_1 + 0.03$	$(\mathrm{SS}_1)\log Q$	32	0.001	0.42	0.108	-22 to 28
$logCl = 1.63 - (0.227 - 0.020C_1 - 0.017S_1)$	$\log\!Q$	31	1.66 x 10 ⁻⁸	0.76	0.043	-9.4 to 10
$logDS = 2.43 - (0.021 - 0.005C_1 - 0.008S_1$	$\log Q$	28	0.001	0.50	0.020	-4.5 to 4.7
Bois de Sioux River near White Rock, S Range of fit: 0.20			ing station 050	50000		
$\log \text{CaCO}_3 = 2.95 - (0.136 + 0.041\text{C}_1 + 0.041\text{C}_1)$	$61S_1)\log Q + 0.041C_1 + 0.176S_1$	12	0.010	0.88	0.063	-14 to 16
$\log \text{Na} = 1.92 - 0.128 \log Q + 0.034 \text{C}_1 + 0.034 \text{C}_2 + 0.034 \text{C}_2 + 0.034 \text{C}_2 + 0.034$	$034S_1 + 0.030C_2 + 0.068S_2$	14	0.004	0.85	0.101	-21 to 26
$\log SO_4 = 2.82 - 0.136 \log Q + 0.013 C_1 + 0.000 C_1 + $	$0.090S_1 + 0.022C_2 + 0.081S_2$	12	0.060	0.77	0.115	-23 to 30
$\log \text{Cl} = 1.22 - 0.064 \log Q + 0.126 \text{C}_1 - 0.08$	$3S_1 + 0.081C_2 + 0.046S_2$	14	6.90 x 10 ⁻⁵	0.95	0.055	-12 to 14
$logDS = 3.15 - (0.145 + 0.017C_1 + 0.071S)$	$_{1})\log Q + 0.007C_{1} + 0.180S_{1}$	12	0.016	0.86	0.073	-15 to 18
Red R	iver of the North at Wahpeton, N. Range of fit: 35 <		ng station 050!	51500		
$logCaCO_3 = 2.68 - 0.024logQ + 0.332C_1 - 0.0000000000000000000000000000000000$	$-0.019S_1 + 0.218C_2 + 0.024S_2$	50	0.085	0.19	0.088	-18 to 22
$logNa = 1.41 - (0.116 - 0.015C_1 - 0.028S_1)$	$\mathrm{log} Q$	51	0.065	0.14	0.157	-30 to 44
$SO_4 = 250Q^{-0.407}$ $SO_4 = 0.563Q^{0.696}$ $SO_4 = 308Q^{-0.146}$	$35 \le Q \le 251$ $251 < Q \le 1,780$ $1,780 < Q \le 11,000$	48	8.81 x 10 ⁻⁶	0.44	0.232	-41 to 70
$\log \text{Cl} = 0.814 + (0.062 + 0.211\text{C}_1 - 0.2368)$	$\log Q - 0.678C_1 + 0.734S_1$	45	0.008	0.32	0.174	-33 to 49
$logDS = 2.56 - (0.041 - 0.006C_1 - 0.019S_1$	$\log Q$	49	0.008	0.23	0.071	-15 to 18

Table 2. Relations between selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

[log, base-10 logarithm; $CaCO_3$, hardness concentration, in milligrams per liter; C_1 , $cos (2\pi \text{ month/}12)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; S_1 , S_2 , S_3 , S_4 , S_4 , S_3 , S_4 , S_4 , S_4 , S_4 , S_5 ,

		In base-10 logarithm			hm	Range of
Equ	ation	of data pairs	p-value	Coefficient of determi- nation (R ²)	Residual standard error	standard error of actual concentration (percent)
	Red River of the North at Hickson, N. D Range of fit: $3.0 \le \ell$		g station 05051	1522		
$CaCO_3 = 760Q^{-0.218}$ $CaCO_3 = 344Q^{-0.054}$ $CaCO_3 = 56.8Q^{0.221}$ $CaCO_3 = 27,910Q^{-0.571}$	3.0 \leq Q \leq 126 126 $<$ Q \leq 708 708 $<$ Q \leq 2,510 2,510 $<$ Q \leq 12,000	115	8.85 x 10 ⁻¹⁴	0.45	0.080	-17 to 20
Na = $39.4Q^{-0.177}$ Na = $2.78Q^{0.234}$ Na = $1,090Q^{-0.528}$	$3.0 \le Q \le 631$ $631 < Q \le 2,510$ $2,510 < Q \le 12,000$	114	2.59 x 10 ⁻⁶	0.23	0.141	-28 to 38
$SO_4 = 379Q^{-0.379}$ $SO_4 = 0.142Q^{0.891}$ $SO_4 = 10,050Q^{-0.536}$	$3.0 \le Q \le 501$ $501 < Q \le 2,510$ $2,510 < Q \le 12,000$	115	7.05 x 10 ⁻⁸	0.28	0.286	-48 to 93
C1 = $24.1Q^{-0.206}$ C1 = $6.83Q^{0.054}$ C1 = $261Q^{-0.411}$	$3.0 \le Q \le 126$ $126 < Q \le 2,510$ $2,510 < Q \le 12,000$	114	0.115	0.05	0.225	-40 to 68
DS = $6,670Q^{-0.931}$ DS = $462Q^{-0.072}$ DS = $113Q^{0.155}$ DS = $12,960Q^{-0.451}$	$3.0 \le Q \le 22.4$ $22.4 < Q \le 501$ $501 < Q \le 2,510$ $2,510 < Q \le 12,000$	111	6.90 x 10 ⁻¹³	0.44	0.091	-19 to 23
,	Wild Rice River near Abercrombie, N. I Range of fit: 0.01 ≤		ng station 0505	3000		
$logCaCO_3 = 2.76 - (0.088 + 0.041C_1)$	$+0.125S_1)\log Q + 0.061C_1 + 0.138S_1$	275	0	0.50	0.167	-32 to 47
$\log \text{Na} = 2.14 - (0.134 + 0.012\text{C}_1 + 0.$	$166S_1)\log Q + 0.028C_1 + 0.177S_1$	275	0	0.50	0.236	-42 to 72
$\log SO_4 = 2.64 - (0.102 + 0.021C_1 + 0.021C_1)$	$0.171S_1)\log Q + 0.009C_1 + 0.206S_1$	238	0	0.46	0.233	-41 to 71
$\log \text{Cl} = 1.73 - (0.111 - 0.039\text{C}_1 + 0.0$	$82S_1)\log Q$	222	0	0.47	0.230	-41 to 70
$logDS = 3.06 - (0.118 + 0.027C_1 + 0.$	$.154S_1)\log Q + 0.022C_1 + 0.192S_1$	222	0	0.60	0.164	-32 to 46

Table 2. Relations between selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

[log, base-10 logarithm; $CaCO_3$, hardness concentration, in milligrams per liter; C_1 , $\cos(2\pi \, \text{month}/12)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; S_1 , $\sin(2\pi \, \text{month}/12)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; Q, streamflow, in cubic feet per second; Na, sodium concentration, in milligrams per liter; \leq , less than or equal to; <, less than; SO_4 , sulfate concentration, in milligrams per liter; C_1 , chloride concentration, in milligrams per liter; DS, dissolved-solids concentration, in milligrams per liter; C_2 , $\cos(2\pi \, \text{month}/6)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; and S_2 , $\sin(2\pi \, \text{month}/6)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December]

Read River of the North at Fargo, N. Dak., gasjing station 050554000 Range of fit: 0 ≤ 0 ≤ 258,000 for No and CaCO ₃ and 14 ≤ 0 ≤ 258,000 for NO ₄ , Cl, and DS			In base-10 logarithm		Range of		
Range of fit: 0 ≤ Q ≤ 25,800 for Na and CaCO ₃ and 14 ≤ Q ≤ 25,800 for SO ₄ , CI, and DS logCaCO ₃ = 2.55 - (0.061 + 0.052C ₁ + 0.092S ₁)logQ + 0.129C ₁ + 0.256S ₁ 501 0 0.27 0.082 -17 to 2 Na = 10.5Q 0.093 0.5Q ≤ 56.2 498 0 0.18 0.139 -27 to 3 Na = 2.89 Q -0.159 56.2 < Q ≤ 251 1.580 < Q ≤ 25.800	Equation		of data		of determi- nation	standard	standard error of actual concentration (percent)
$\begin{array}{c} Na = 0.5Q^{0.093}_{Na} = 28.9Q^{-0.159}_{O-159} & 0.18 & 0.139 & -27 \text{ to } 3.0 \\ Na = 28.9Q^{-0.159}_{O-159} & 56.2 < Q \le 251 \\ Na = 27.4Q^{-0.269}_{O-365} & 251 < Q \le 1.580 \\ Na = 290Q^{-0.365} & 1.580 < Q \le 25.800 \\ SO_4 = 157Q^{-0.269}_{O-369} & 14 \le Q \le 200 \\ SO_4 = 2.21Q^{-0.356} & 200 < Q \le 1.580 \\ SO_4 = 1.025Q^{-0.298} & 1.580 < Q \le 25.800 \\ IogCl = 0.956 - 0.076logQ - 0.025C_1 + 0.052S_1 - 0.056C_2 - 0.014S_2 \\ 200 < Q \le 1.580 & 23.3 & 4.84 \times 10^{-13} & 0.24 \\ Alternate option: use mean value of 7.02 instead of equation.) \\ DS = 234Q^{-0.082}_{O-312} & 14 \le Q \le 70.8 \\ DS = 338Q^{-0.114}_{O-312} & 70.8 < Q \le 25.10 \\ DS = 142Q^{-0.128}_{O-128} & 251 < Q \le 1.580 \\ DS = 33620Q^{-0.312} & 1.580 < Q \le 25.800 \\ \\ \hline Red River of the North below Fargo, N. Dak., gaging station 05054020 \\ Range of fit: 2.0 \le Q \le 1.7300 \\ \\ logCaCO_3 = 2.55 - (0.057 + 0.054C_1 + 0.031S_1)logQ + 0.132C_1 + 0.100S_1 & 178 & 2.36 \times 10^{-8} & 0.22 & 0.064 & -14 \text{ to } 1.000 \\ \\ logSO_4 = 2.14 - (0.143 + 0.303C_1 - 0.099S_1)logQ + 0.418C_1 + 0.038S_1 & 149 & 0 & 0.64 & 0.135 & -27 \text{ to } 3.000 \\ \\ logCl = 1.90 - (0.332 + 0.198C_1 - 0.002S_1)logQ + 0.631C_1 - 0.245S_1 & 177 & 3.91 \times 10^{-14}_{O-10} & 0.34 & 0.213 & -39 \text{ to } 6.000 \\ \\ logCl = 2.284 - (0.125 + 0.109C_1 + 0.026S_1)logQ + 0.322C_1 + 0.005S_1 & 167 & 0 & 0.59 & 0.150 & -29 \text{ to } 4.0000 \\ \\ logCl = 2.284 - (0.125 + 0.109C_1 + 0.026S_1)logQ + 0.241C_1 + 0.033S_1 & 178 & 2.40 \times 10^{-9}_{O-10} & 0.24 & 0.165 & -32 \text{ to } 4.0000 \\ \\ logCaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1)logQ + 0.038C_1 + 0.03S_1 & 177 & 0 & 0.69 & 0.155 & -27 \text{ to } 3.0000 \\ \\ logCaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1)logQ + 0.038C_1 + 0.03S_1 & 177 & 0 & 0.69 & 0.155 & -27 \text{ to } 3.0000 \\ \\ logCaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1)logQ + 0.038C_1 + 0.03S_1 & 177 & 0 & 0.69 & 0.135 & -27 \text{ to } 3.0000 \\ \\ logCaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1)logQ + 0.038C_1 + 0.03S_1 & 177 & 0 & 0.69 & 0.135 & -27 \text{ to } 3.0000 \\ \\ logCaCO_3 = 2.19 + (0.028 - 0.0000000000000$							
$N_{\rm a} = 2.89Q^{0.159}_{\rm A120} > 56.2 < Q \le 2.51_{\rm A2} = 2.740Q^{0.159}_{\rm A2} < 2.1580_{\rm A} = 2.74Q^{0.269}_{\rm A269} > 1.580 < Q \le 25.800_{\rm A} = 2.70Q^{-0.365}_{\rm A20} > 14 \le Q \le 200_{\rm A25}_{\rm A200} > 437_{\rm A250}_{\rm A250} > 0.36_{\rm A250}_{\rm A250} > 0.202_{\rm A258}_{\rm A200} > 0.202_{\rm A2580}_{\rm A250} > 0.202_{\rm A2580}_{\rm A250} > 0.202_{\rm A2580}_{\rm A250}_{\rm A250} > 0.202_{\rm A2580}_{\rm A250}_{\rm A250}_{\rm A250} > 0.202_{\rm A2580}_{\rm A250}_{\rm A2500} > 0.202_{\rm A2580}_{\rm A2580}_{\rm A2500}_{\rm A2580}_{\rm A2580} > 0.171_{\rm A2500}_{\rm A2500}_{\rm A2580}_{\rm A2580} > 0.310_{\rm A2500}_{\rm A2580}_{\rm A25800}_{\rm A258000}_{\rm A2580000}_{\rm A2580000}_{\rm A2580000}_{\rm A2580000}_{\rm A2580$	$\log \text{CaCO}_3 = 2.55 - (0.061 + 0.052\text{C}_1 + 0.092\text{S}_1)$	$\log Q + 0.129C_1 + 0.256S_1$	501	0	0.27	0.082	-17 to 21
$\begin{array}{c} \mathrm{SO_4} = 2.21Q^{0.356} \\ \mathrm{O_4} = 1,025Q^{-0.298} \\ \mathrm{logCI} = 0.956 - 0.076\log Q - 0.025\mathrm{C_1} + 0.052\mathrm{S_1} - 0.056\mathrm{C_2} - 0.014\mathrm{S_2} \\ \mathrm{(Alternate option: use mean value of 7.02 instead of equation.)} \\ \mathrm{DS} = 234Q^{0.082} \\ \mathrm{DS} = 334Q^{0.182} \\ \mathrm{DS} = 3362Q^{0.114} \\ \mathrm{DS} = 342Q^{0.128} \\ \mathrm{DS} = 342Q^{0.128} \\ \mathrm{DS} = 3,620Q^{-0.312} \\ \mathrm{DS} = 3,620Q^{-0.312} \\ \mathrm{DS} = 3,620Q^{-0.312} \\ \mathrm{DS} = 2.55 - (0.057 + 0.054\mathrm{C_1} + 0.031\mathrm{S_1})\log Q + 0.132\mathrm{C_1} + 0.100\mathrm{S_1} \\ \mathrm{logNa} = 2.09 - (0.323 + 0.198\mathrm{C_1} - 0.002\mathrm{S_1})\log Q + 0.418\mathrm{C_1} + 0.038\mathrm{S_1} \\ \mathrm{logSO_4} = 2.14 - (0.143 + 0.303\mathrm{C_1} - 0.099\mathrm{S_1})\log Q + 0.32\mathrm{C_1} + 0.005\mathrm{S_1} \\ \mathrm{logDS} = 2.84 - (0.125 + 0.109\mathrm{C_1} + 0.026\mathrm{S_1})\log Q + 0.24\mathrm{C_1} + 0.093\mathrm{S_1} \\ \mathrm{logDS} = 2.84 - (0.125 + 0.109\mathrm{C_1} + 0.026\mathrm{S_1})\log Q + 0.032\mathrm{C_1} + 0.093\mathrm{S_1} \\ \mathrm{logCaCO_3} = 2.19 + (0.128 - 0.083\mathrm{C_1} - 0.022\mathrm{S_1})\log Q + 0.032\mathrm{C_1} + 0.005\mathrm{S_1} \\ \mathrm{logNa} = 2.09 - (0.332 + 0.139\mathrm{C_1} - 0.022\mathrm{S_1})\log Q + 0.322\mathrm{C_1} + 0.005\mathrm{S_1} \\ \mathrm{logDS} = 2.84 - (0.125 + 0.109\mathrm{C_1} + 0.026\mathrm{S_1})\log Q + 0.322\mathrm{C_1} + 0.005\mathrm{S_1} \\ \mathrm{logDS} = 2.84 - (0.125 + 0.109\mathrm{C_1} + 0.026\mathrm{S_1})\log Q + 0.038\mathrm{C_1} + 0.033\mathrm{S_1} \\ \mathrm{logDS} = 2.84 - (0.128 - 0.083\mathrm{C_1} - 0.144\mathrm{S_1})\log Q + 0.038\mathrm{C_1} + 0.033\mathrm{S_1} \\ \mathrm{logDS} = 2.48 - (0.184 - 0.002\mathrm{C_1} + 0.139\mathrm{S_1})\log Q + 0.038\mathrm{C_1} + 0.038\mathrm{S_1} \\ \mathrm{logDS} = 2.49 - (0.128 - 0.083\mathrm{C_1} - 0.144\mathrm{S_1})\log Q + 0.038\mathrm{C_1} + 0.033\mathrm{S_1} \\ \mathrm{logDS} = 2.49 - (0.128 - 0.083\mathrm{C_1} - 0.144\mathrm{S_1})\log Q + 0.038\mathrm{C_1} + 0.033\mathrm{S_1} \\ \mathrm{logDS} = 2.49 - (0.128 - 0.083\mathrm{C_1} - 0.144\mathrm{S_1})\log Q + 0.038\mathrm{C_1} + 0.030\mathrm{S_1} \\ \mathrm{logDS} = 2.49 - (0.128 - 0.083\mathrm{C_1} + 0.139\mathrm{S_1})\log Q + 0.032\mathrm{C_1} + 0.030\mathrm{S_1} \\ \mathrm{logDS} = 2.49 - (0.128 - 0.083\mathrm{C_1} + 0.139\mathrm{S_1})\log Q + 0.032\mathrm{C_1} + 0.030\mathrm{S_1} \\ \mathrm{logDS} = 2.49 - (0.128 - 0.083\mathrm{C_1} + 0.139\mathrm{S_1})\log Q + 0.032\mathrm{C_1} + 0.030\mathrm{S_1} \\ \mathrm{logDS} = 2.49 - (0.128 - 0.083\mathrm{C_1} + 0.139\mathrm{S_1})\log Q + 0.032\mathrm{C_1} + 0.030\mathrm{S_1} \\ \mathrm{logDS} = 2.49 - (0.084 - 0.018\mathrm{C_1} + 0.0138\mathrm{C_1} + 0.004\mathrm{C_1} \\ $	Na = $28.9Q^{-0.159}$ 5 Na = $2.74Q^{0.267}$	$6.2 < Q \le 251$ $651 < Q \le 1,580$	498	0	0.18	0.139	-27 to 38
(Alternate option: use mean value of 7.02 instead of equation.) $DS = 234Q^{0.082} \\ DS = 538Q^{-0.114} \\ DS = 142Q^{0.128} \\ DS = 3,620Q^{-0.312} \\ DS = 3,62$	$SO_4 = 2.210^{0.536}$	$0.00 < Q \le 1,580$	437	0	0.36	0.202	-37 to 59
$\begin{array}{c} \text{DS} = 538Q^{-0.114} \\ \text{DS} = 142Q^{-0.312} \\ \text{DS} = 3,620Q^{-0.312} \\ \end{array} \begin{array}{c} 70.8 < Q \le 251 \\ 251 < Q \le 1,580 \\ \text{DS} = 3,620Q^{-0.312} \\ \end{array} \begin{array}{c} \text{Red River of the North below Fargo, N. Dak., gaging station 05054020} \\ \text{Range of fit: } 2.0 \le Q \le 17,300 \\ \\ \text{logCaCO}_3 = 2.55 - (0.057 + 0.054C_1 + 0.031S_1)\log Q + 0.132C_1 + 0.100S_1 \\ \\ \text{logNa} = 2.09 - (0.323 + 0.198C_1 - 0.002S_1)\log Q + 0.418C_1 + 0.038S_1 \\ \\ \text{logSO}_4 = 2.14 - (0.143 + 0.303C_1 - 0.099S_1)\log Q + 0.631C_1 - 0.245S_1 \\ \\ \text{logC1} = 1.90 - (0.332 + 0.139C_1 - 0.022S_1)\log Q + 0.322C_1 + 0.005S_1 \\ \\ \text{logDS} = 2.84 - (0.125 + 0.109C_1 + 0.026S_1)\log Q + 0.241C_1 + 0.093S_1 \\ \\ \text{Sheyenne River above Harvey, N. Dak., gaging station 05054500} \\ \\ \text{Range of fit: } 0.19 \le Q \le 690 \\ \\ \text{logNa} = 2.48 - (0.184 - 0.002C_1 + 0.139S_1)\log Q + 0.032C_1 + 0.033S_1 \\ \\ \text{logNa} = 2.690 \\ \\ \text{logNa} = 2.48 - (0.184 - 0.002C_1 + 0.139S_1)\log Q + 0.032C_1 + 0.033S_1 \\ \\ \text{logNa} = 2.48 - (0.184 - 0.002C_1 + 0.139S_1)\log Q + 0.032C_1 + 0.033S_1 \\ \\ \text{logNa} = 2.48 - (0.184 - 0.002C_1 + 0.139S_1)\log Q + 0.012C_1 + 0.030S_1 \\ \\ \text{logNa} = 2.48 - (0.184 - 0.002C_1 + 0.139S_1)\log Q + 0.012C_1 + 0.030S_1 \\ \\ \text{logNa} = 2.48 - (0.184 - 0.002C_1 + 0.139S_1)\log Q + 0.012C_1 + 0.030S_1 \\ \\ \text{logNa} = 2.48 - (0.184 - 0.002C_1 + 0.139S_1)\log Q + 0.012C_1 + 0.030S_1 \\ \\ \text{logNa} = 2.48 - (0.184 - 0.002C_1 + 0.139S_1)\log Q + 0.007C_1 + 0.040S_1 \\ \\ \text{logNa} = 2.48 - (0.084 - 0.018C_1 + 0.113S_1)\log Q + 0.007C_1 + 0.040S_1 \\ \\ \text{logO} = 0.040 \\ \\ logO$			235	0.171	0.03	0.310	-51 to 104
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$DS = 538Q^{-0.114}$ $DS = 142Q^{0.128}$	$0.8 < Q \le 251$ $0.51 < Q \le 1,580$	233	4.84 x 10 ⁻¹³	0.24	0.094	-19 to 24
$ \log \text{CaCO}_3 = 2.55 - (0.057 + 0.054\text{C}_1 + 0.031\text{S}_1) \log Q + 0.132\text{C}_1 + 0.100\text{S}_1 \\ \log \text{Na} = 2.09 - (0.323 + 0.198\text{C}_1 - 0.002\text{S}_1) \log Q + 0.418\text{C}_1 + 0.038\text{S}_1 \\ \log \text{SO}_4 = 2.14 - (0.143 + 0.303\text{C}_1 - 0.099\text{S}_1) \log Q + 0.631\text{C}_1 - 0.245\text{S}_1 \\ \log \text{Cl} = 1.90 - (0.332 + 0.139\text{C}_1 - 0.022\text{S}_1) \log Q + 0.322\text{C}_1 + 0.005\text{S}_1 \\ \log \text{DS} = 2.84 - (0.125 + 0.109\text{C}_1 + 0.026\text{S}_1) \log Q + 0.241\text{C}_1 + 0.093\text{S}_1 \\ \log \text{DS} = 2.84 - (0.125 + 0.109\text{C}_1 + 0.026\text{S}_1) \log Q + 0.241\text{C}_1 + 0.093\text{S}_1 \\ \log \text{CaCO}_3 = 2.19 + (0.128 - 0.083\text{C}_1 - 0.144\text{S}_1) \log Q + 0.038\text{C}_1 + 0.033\text{S}_1 \\ \log \text{Da}_4 = 2.48 - (0.184 - 0.002\text{C}_1 + 0.139\text{S}_1) \log Q - 0.012\text{C}_1 + 0.030\text{S}_1 \\ \log \text{Da}_4 = 198Q^{0.099} \\ \log \text{CaCO}_4 = 174Q^{0.163} \\ \log \text{CaCO}_4 = 174Q^{0.163} \\ \log \text{CaCO}_4 = 1.360Q^{-0.523} \\ \log \text{CaCO}_4 = 1.29 - (0.084 - 0.018\text{C}_1 + 0.113\text{S}_1) \log Q + 0.007\text{C}_1 + 0.040\text{S}_1 \\ \log \text{CaCO}_1 + 0.030\text{C}_1 + 0.113\text{S}_1) \log Q + 0.007\text{C}_1 + 0.040\text{S}_1 \\ \log \text{CaCO}_1 = 1.29 - (0.084 - 0.018\text{C}_1 + 0.113\text{S}_1) \log Q + 0.007\text{C}_1 + 0.040\text{S}_1 \\ \log \text{CaCO}_4 = 1.29 - (0.084 - 0.018\text{C}_1 + 0.113\text{S}_1) \log Q + 0.007\text{C}_1 + 0.040\text{S}_1 \\ \log \text{CaCO}_4 = 1.29 - (0.084 - 0.018\text{C}_1 + 0.113\text{S}_1) \log Q + 0.007\text{C}_1 + 0.040\text{S}_1 \\ \log \text{CaCO}_1 + 0.040\text{S}_1 \\ \log \text{CaCO}_2 = 1.29 - (0.084 - 0.018\text{C}_1 + 0.113\text{S}_1) \log Q + 0.007\text{C}_1 + 0.040\text{S}_1 \\ \log \text{CaCO}_4 = 1.29 - (0.084 - 0.018\text{C}_1 + 0.113\text{S}_1) \log Q + 0.007\text{C}_1 + 0.040\text{S}_1 \\ \log \text{CaCO}_4 = 1.29 - (0.084 - 0.018\text{C}_1 + 0.113\text{S}_1) \log Q + 0.007\text{C}_1 + 0.040\text{S}_1 \\ \log \text{CaCO}_4 = 1.29 - (0.084 - 0.018\text{C}_1 + 0.113\text{S}_1) \log Q + 0.007\text{C}_1 + 0.040\text{S}_1 \\ \log \text{CaCO}_4 = 1.29 - (0.084 - 0.018\text{C}_1 + 0.113\text{S}_1) \log Q + 0.007\text{C}_1 + 0.040\text{S}_1 \\ \log \text{CaCO}_4 = 1.29 - (0.084 - 0.018\text{C}_1 + 0.113\text{S}_1) \log Q + 0.007\text{C}_1 + 0.040\text{S}_1 \\ \log \text{CaCO}_4 = 1.29 - (0.084 - 0.018\text{C}_1 + 0.113\text{S}_1) \log Q + 0.007\text{C}_1 + 0.040\text{S}_1 \\ \log \text{CaCO}_4 = 1.29 - (0.084 - 0.018\text{C}_1 + 0.013\text{C}_1 + 0.013\text{C}_1 + 0.040\text{C}_1 + 0.040\text{C}_1 \\ \log \text{CaCO}_4 = $	Red River of			ng station 0505	64020		
$\begin{split} \log \mathrm{SO_4} &= 2.14 - (0.143 + 0.303 \mathrm{C_1} - 0.099 \mathrm{S_1}) \log Q + 0.631 \mathrm{C_1} - 0.245 \mathrm{S_1} & 177 & 3.91 \times 10^{-14} & 0.34 & 0.213 & -39 \text{ to } 60 \\ \log \mathrm{CI} &= 1.90 - (0.332 + 0.139 \mathrm{C_1} - 0.022 \mathrm{S_1}) \log Q + 0.322 \mathrm{C_1} + 0.005 \mathrm{S_1} & 167 & 0 & 0.59 & 0.150 & -29 \text{ to } 40 \\ \log \mathrm{DS} &= 2.84 - (0.125 + 0.109 \mathrm{C_1} + 0.026 \mathrm{S_1}) \log Q + 0.241 \mathrm{C_1} + 0.093 \mathrm{S_1} & 133 & 2.39 \times 10^{-14} & 0.43 & 0.084 & -17 \text{ to } 20 \\ & & & & & & & & & & & & & & & & & & $	$logCaCO_3 = 2.55 - (0.057 + 0.054C_1 + 0.031S_1)$			2.36 x 10 ⁻⁸	0.22	0.064	-14 to 16
$\log \text{Cl} = 1.90 - (0.332 + 0.139\text{C}_1 - 0.022\text{S}_1)\log Q + 0.322\text{C}_1 + 0.005\text{S}_1 \qquad 167 \qquad 0 \qquad 0.59 \qquad 0.150 \qquad -29 \text{ to } 40 \text{ to } 20 t$	$logNa = 2.09 - (0.323 + 0.198C_1 - 0.002S_1)logQ$	$+0.418C_1 + 0.038S_1$	149	0	0.64	0.135	-27 to 37
$\log DS = 2.84 - (0.125 + 0.109C_1 + 0.026S_1) \log Q + 0.241C_1 + 0.093S_1 \\ \text{Sheyenne River above Harvey, N. Dak., gaging station 05054500} \\ \text{Range of fit: } 0.19 \leq Q \leq 690 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log Na = 2.48 - (0.184 - 0.002C_1 + 0.139S_1) \log Q - 0.012C_1 + 0.030S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.139S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.139S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.139S_1) \log Q + 0.038C_1 + 0.033S_1 \\ \log CaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.139S_1) \log $	$logSO_4 = 2.14 - (0.143 + 0.303C_1 - 0.099S_1)logS_1$	$Q + 0.631C_1 - 0.245S_1$	177	3.91 x 10 ⁻¹⁴	0.34	0.213	-39 to 63
Sheyenne River above Harvey, N. Dak., gaging station 05054500 Range of fit: $0.19 \le Q \le 690$ $\log \text{CaCO}_3 = 2.19 + (0.128 - 0.083\text{C}_1 - 0.144\text{S}_1)\log Q + 0.038\text{C}_1 + 0.033\text{S}_1 \qquad 178 \qquad 2.40 \times 10^{-9} \qquad 0.24 \qquad 0.165 \qquad -32 \text{ to } 200 \times 100 \times$	$\log Cl = 1.90 - (0.332 + 0.139C_1 - 0.022S_1)\log Q$	$+0.322C_1 + 0.005S_1$	167	0	0.59	0.150	-29 to 41
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$logDS = 2.84 - (0.125 + 0.109C_1 + 0.026S_1)logQ$	$Q + 0.241C_1 + 0.093S_1$	133	2.39 x 10 ⁻¹⁴	0.43	0.084	-17 to 21
$\begin{split} \log \text{CaCO}_3 &= 2.19 + (0.128 - 0.083\text{C}_1 - 0.144\text{S}_1)\log Q + 0.038\text{C}_1 + 0.033\text{S}_1 & 178 & 2.40 \times 10^{-9} & 0.24 & 0.165 & -32 \text{ to } 4 \\ \log \text{Na} &= 2.48 - (0.184 - 0.002\text{C}_1 + 0.139\text{S}_1)\log Q - 0.012\text{C}_1 + 0.030\text{S}_1 & 177 & 0 & 0.69 & 0.135 & -27 \text{ to } 3 \\ \text{SO}_4 &= 198Q_0^{0.099} & 0.19 \leq Q \leq 7.9 & 177 & 0 & 0.38 & 0.143 & -28 \text{ to } 3 \\ \text{SO}_4 &= 174Q_0^{0.163} & 7.9 < Q \leq 20 \\ \text{SO}_4 &= 1,360Q_0^{-0.523} & 20 < Q \leq 690 & 0.40 & 0.146 & -29 \text{ to } 4 \\ \log \text{Cl} &= 1.29 - (0.084 - 0.018\text{C}_1 + 0.113\text{S}_1)\log Q + 0.007\text{C}_1 + 0.040\text{S}_1 & 178 & 0 & 0.40 & 0.146 & -29 \text{ to } 4 \\ 0.165 & -32 \text{ to } 4 & -32$	Sheyenne			station 050545	00		
$SO_4 = 198Q^{0.099} \qquad 0.19 \le Q \le 7.9 \qquad 177 \qquad 0 \qquad 0.38 \qquad 0.143 \qquad -28 \text{ to } 3$ $SO_4 = 174Q^{0.163} \qquad 7.9 < Q \le 20$ $SO_4 = 1,360Q^{-0.523} \qquad 20 < Q \le 690$ $\log Cl = 1.29 - (0.084 - 0.018C_1 + 0.113S_1)\log Q + 0.007C_1 + 0.040S_1 \qquad 178 \qquad 0 \qquad 0.40 \qquad 0.146 \qquad -29 \text{ to } 4$	$logCaCO_3 = 2.19 + (0.128 - 0.083C_1 - 0.144S_1)logCaCO_3 = 0.083C_1 - 0.085C_1 - 0.08$	-		2.40 x 10 ⁻⁹	0.24	0.165	-32 to 46
$\begin{aligned} & \text{SO}_4 = 174 Q^{0.163} & 7.9 < Q \le 20 \\ & \text{SO}_4 = 1,360 Q^{-0.523} & 20 < Q \le 690 \end{aligned}$ $\log \text{Cl} = 1.29 - (0.084 - 0.018 \text{C}_1 + 0.113 \text{S}_1) \log Q + 0.007 \text{C}_1 + 0.040 \text{S}_1 & 178 & 0 & 0.40 & 0.146 & -29 \text{ to } 40 \end{aligned}$	$\log \text{Na} = 2.48 - (0.184 - 0.002\text{C}_1 + 0.139\text{S}_1)\log Q$	$-0.012C_1 + 0.030S_1$	177	0	0.69	0.135	-27 to 37
	$SO_4 = 174O^{0.163}$	$0.9 < Q \le 20$	177	0	0.38	0.143	-28 to 39
$\log DS = 2.99 - 0.117 \log Q + 0.007 C_1 - 0.038 S_1 + 0.092 C_2 - 0.027 S_2 $ 177 0 0.58 0.106 -22 to 2	$\log {\rm Cl} = 1.29 - (0.084 - 0.018 {\rm C_1} + 0.113 {\rm S_1}) {\log} Q$	$+0.007C_1 + 0.040S_1$	178	0	0.40	0.146	-29 to 40
	$\log DS = 2.99 - 0.117 \log Q + 0.007 C_1 - 0.038 S_1 + 0.007 C_2 - 0.000 S_1 + 0.000 S_2 - 0.000 S_2 + 0.$	- 0.092C ₂ - 0.027S ₂	177	0	0.58	0.106	-22 to 28

Table 2. Relations between selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

[log, base-10 logarithm; $CaCO_3$, hardness concentration, in milligrams per liter; C_1 , $\cos(2\pi \, \text{month}/12)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; S_1 , S_2 , S_3 , S_4 , S_4 , S_4 , S_4 , S_5 , S_4 , S_5 ,

	Number -	In base-10 logarithm			Range of
Equation	of data pairs	p-value	Coefficient of determi- nation (R ²)	Residual standard error	standard error of actual concentration (percent)
Sheyenne River near Warwick, N. Da Range of fit: $0.10 \le Q \le 2,310$ for Na and CaCO ₃ a					
$\log \text{CaCO}_3 = 2.44 - (0.043 + 0.013\text{C}_1 + 0.126\text{S}_1)\log Q + 0.001\text{C}_1 + 0.138\text{S}_1$	529	0	0.45	0.106	-22 to 28
$\log \mathrm{Na} = 1.69 + (0.142 + 0.041 \mathrm{C}_1 - 0.233 \mathrm{S}_1) \log Q - 0.126 \mathrm{C}_1 + 0.137 \mathrm{S}_1$	529	0	0.36	0.216	-39 to 64
$\log \mathrm{SO_4} = 1.89 + (0.066 - 0.022 \mathrm{C_1} - 0.155 \mathrm{S_1}) \log Q - 0.066 \mathrm{C_1} + 0.118 \mathrm{S_1}$	275	0	0.32	0.171	-33 to 48
$\log \text{Cl} = 1.04 + (0.068 + 0.046\text{C}_1 - 0.234\text{S}_1) \log Q - 0.104\text{C}_1 + 0.255\text{S}_1$	245	0	0.40	0.176	-33 to 50
$\log DS = 2.67 + (0.012 - 0.005C_1 - 0.172S_1) \log Q - 0.048C_1 + 0.155S_1$	229	0	0.49	0.121	-24 to 32
Sheyenne River near Cooperstown, N. Range of fit: 0.02 ≤		y station 050	57000		
$\log \text{CaCO}_3 = 2.60 - (0.093 + 0.100\text{C}_1 + 0.130\text{S}_1) \log Q + 0.147\text{C}_1 + 0.161\text{S}_1$	366	0	0.63	0.095	-20 to 24
$\log \mathrm{Na} = 2.05 - 0.106 \log Q - 0.017 \\ \mathrm{C}_1 - 0.050 \\ \mathrm{S}_1 + 0.095 \\ \mathrm{C}_2 + 0.023 \\ \mathrm{S}_2$	365	0	0.40	0.151	-29 to 42
$\log \mathrm{SO_4} = 2.24 - (0.070 + 0.110 \mathrm{C_1} + 0.091 \mathrm{S_1}) \log Q + 0.137 \mathrm{C_1} + 0.081 \mathrm{S_1}$	319	0	0.41	0.118	-24 to 31
$\log Cl = 1.35 - (0.105 + 0.077C_1 + 0.116S_1)\log Q + 0.118C_1 + 0.146S_1$	314	0	0.60	0.114	-23 to 30
$\log DS = 2.87 - (0.089 + 0.079C_1 + 0.123S_1) \log Q + 0.089C_1 + 0.144S_1$	305	0	0.61	0.099	-20 to 26
Baldhill Creek near Dazey, N. Dak Range of fit: 0.01 <		tion 050572 0	0		
$\log \text{CaCO}_3 = 2.57 - (0.091 + 0.070\text{C}_1 + 0.140\text{S}_1)\log Q + 0.042\text{C}_1 + 0.049\text{S}_1$	84	0	0.85	0.088	-18 to 22
$\log \text{Na} = 1.86 - (0.206 + 0.057\text{C}_1 + 0.147\text{S}_1) \log Q$	84	0	0.85	0.157	-30 to 44
$\log \mathrm{SO_4} = 2.29 - (0.158 + 0.112 \mathrm{C_1} + 0.106 \mathrm{S_1}) \log Q$	84	0	0.78	0.138	-27 to 37
$\log \text{Cl} = 1.32 - (0.171 + 0.037\text{C}_1 + 0.065\text{S}_1)\log Q$	95	0	0.68	0.179	-34 to 51
$\log DS = 2.80 - (0.116 + 0.057C_1 + 0.116S_1)\log Q + 0.024C_1 + 0.020S_1$	84	0	0.85	0.094	-19 to 24

Table 2. Relations between selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

[log, base-10 logarithm; $CaCO_3$, hardness concentration, in milligrams per liter; C_1 , $\cos(2\pi \, \text{month}/12)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; S_1 , $\sin(2\pi \, \text{month}/12)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; Q, streamflow, in cubic feet per second; Na, sodium concentration, in milligrams per liter; \leq , less than or equal to; <, less than; SO_4 , sulfate concentration, in milligrams per liter; C_1 , chloride concentration, in milligrams per liter; DS, dissolved-solids concentration, in milligrams per liter; C_2 , $\cos(2\pi \, \text{month}/6)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; and S_2 , $\sin(2\pi \, \text{month}/6)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December]

		Number	In ba	ase-10 logaritl	hm	Range of	
Equation		Number of data pairs	p-value	Coefficient of determi- nation (R ²)	Residual standard error	standard error of actual concentration (percent)	
Sheye	nne River below Baldhill Dam, N Range of fit: 3.6 <		ng station 050	58000			
$logCaCO_3 = 2.36 - 0.012logQ - 0.003C_1 + 0.003C_1$	-	111	5.13 x 10 ⁻⁹	0.36	0.084	-18 to 21	
$\log \text{Na} = 1.85 - 0.046 \log Q + 0.009 \text{C}_1 + 0.009 \text{C}_1$	$074S_1 - 0.062C_2 + 0.039S_2$	111	4.73 x 10 ⁻⁷	0.30	0.114	-23 to 30	
$\log SO_4 = 2.06 - 0.005 \log Q - 0.016C_1 + 0.$	$063S_1 - 0.053C_2 + 0.047S_2$	111	1.27 x 10 ⁻⁴	0.21	0.119	-24 to 31	
$\log \text{Cl} = 1.20 - 0.049 \log Q + 0.016 C_1 + 0.0$	$79S_1 - 0.058C_2 + 0.024S_2$	121	4.40 x 10 ⁻⁸	0.31	0.114	-23 to 30	
$\log DS = 2.65 - 0.021 \log Q + 0.001 C_1 + 0.001 C_2 + 0.001 C_3 + 0.001 C_4 + 0.001 C_5 + 0.$	$067S_1 - 0.055C_2 + 0.036S_2$	111	3.70 x 10 ⁻⁸	0.33	0.090	-19 to 23	
Sh	eyenne River at Valley City, N. D Range of fit: 9.1 s		station 050585	00			
$CaCO_3 = 106Q^{0.314}$ $CaCO_3 = 1,160Q^{-0.264}$ $CaCO_3 = 53.1Q^{0.252}$ $CaCO_3 = 148,800Q^{-0.860}$	$9.1 \le Q \le 63.1$ $63.1 < Q \le 398$ $398 < Q \le 1,260$ $1,260 < Q \le 3,520$	22	2.65 x 10 ⁻⁵	0.77	0.057	-12 to 14	
$logNa = 2.38 - (0.440 + 0.122C_1 - 0.416S)$	$\log Q + 0.229C_1 - 0.422S_1$	22	5.68 x 10 ⁻⁴	0.72	0.082	-17 to 21	
$logSO_4 = 2.30 - (0.103 - 0.045C_1 - 0.064S_1)$	$1)\log Q$	23	4.68 x 10 ⁻⁴	0.60	0.074	-16 to 19	
$logCl = 1.43 - (0.156 - 0.026C_1 - 0.095S_1)$	$\log\!Q$	22	2.64 x 10 ⁻⁵	0.73	0.065	-14 to 16	
DS = $208Q^{0.297}$ DS = $1,860Q^{-0.232}$ DS = $117Q^{0.229}$ DS = $576,600Q^{-0.961}$	$9.1 \le Q \le 63.1$ $63.1 < Q \le 398$ $398 < Q \le 1,260$ $1,260 < Q \le 3,520$	22	1.37 x 10 ⁻⁵	0.79	0.059	-13 to 15	
:	Sheyenne River at Lisbon, N. Dak Range of fit: 0.40		ntion 05058700				
$logCaCO_3 = 2.62 - 0.098logQ + 0.021C_1 - 0.0098logQ + 0.00098logQ$	$+ 0.016S_1 + 0.031C_2 + 0.008S_2$	608	0	0.41	0.081	-17 to 20	
$\log \text{Na} = 2.17 - 0.165 \log Q + 0.040 \text{C}_1 + 0.040 \text{C}_1$	$015S_1 + 0.033C_2 + 0.020S_2$	608	0	0.50	0.116	-24 to 31	
$\log SO_4 = 2.49 - (0.153 + 0.048S_1)\log Q - 0.048S_1$	$0.020C_1 + 0.099S_1$	544	0	0.38	0.126	-25 to 34	
$\log \text{Cl} = 1.94 - 0.260 \log Q + 0.026 \text{C}_1 + 0.0$	$11S_1 + 0.020C_2 - 0.001S_2$	330	0	0.62	0.134	-27 to 36	
$\log DS = 2.92 - 0.106 \log Q + 0.027 C_1 + 0.$	$0.013S_1 + 0.025C_2 + 0.025S_2$	327	0	0.45	0.087	-18 to 22	

Table 2. Relations between selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

[log, base-10 logarithm; $CaCO_3$, hardness concentration, in milligrams per liter; C_1 , $\cos(2\pi \text{ month}/12)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; S_1 , S_2 , S_3 , S_4 , S_4 , S_4 , S_4 , S_4 , S_4 , S_5 , S

	Number	In ba	se-10 logaritl	se-10 logarithm					
Equation	of data pairs	p-value	Coefficient of determi- nation (R ²)	Residual standard error	standard error of actual concentration (percent)				
Sheyenne River near Kindred, N. Dak., gaging station 05059000 Range of fit: $19 \le Q \le 4,070$									
$\log \text{CaCO}_3 = 2.67 - (0.088 - 0.008\text{C}_1 + 0.062\text{S}_1)\log Q - 0.001\text{C}_1 + 0.133\text{S}_1$	220	0	0.43	0.073	-15 to 18				
$\log \mathrm{Na} = 1.98 - (0.074 - 0.046 \mathrm{C}_1 + 0.094 \mathrm{S}_1) \log Q - 0.034 \mathrm{C}_1 + 0.209 \mathrm{S}_1$	220	0	0.39	0.107	-22 to 28				
$\log \mathrm{SO_4} = 2.29 - (0.044 - 0.001 \mathrm{C_1} + 0.102 \mathrm{S_1}) \log Q + 0.018 \mathrm{C_1} + 0.220 \mathrm{S_1}$	222	1.53 x 10 ⁻¹⁰	0.22	0.104	-21 to 27				
$\log \text{Cl} = 2.01 - 0.276 \log Q + 0.011 \\ \\ C_1 + 0.016 \\ \\ S_1 + 0.010 \\ \\ C_2 + 0.008 \\ \\ S_2$	220	0	0.61	0.121	-24 to 32				
$\log DS = 2.90 - (0.082 - 0.007C_1 + 0.068S_1) \log Q + 0.010C_1 + 0.148S_1$	221	0	0.41	0.076	-16 to 19				
Sheyenne River at West Fargo, N. Dak., gaging station 05059500 Range of fit: $5.9 < Q < 3,050$									
$\log \text{CaCO}_3 = 2.49 - (0.004 - 0.125\text{C}_1 + 0.155\text{S}_1) \log Q - 0.202\text{C}_1 + 0.253\text{S}_1$	55	1.11 x 10 ⁻¹⁶	0.81	0.061	-13 to 15				
$\log \mathrm{Na} = 1.88 - (0.034 - 0.134 \mathrm{C}_1 + 0.189 \mathrm{S}_1) \log Q - 0.195 \mathrm{C}_1 + 0.349 \mathrm{S}_1$	55	3.77 x 10 ⁻¹³	0.74	0.083	-17 to 21				
$\log \mathrm{SO_4} = 2.26 - 0.059 \log Q + 0.096 \mathrm{C_1} - 0.027 \mathrm{S_1} + 0.004 \mathrm{C_2} + 0.073 \mathrm{S_2}$	55	4.19 x 10 ⁻⁶	0.48	0.104	-21 to 27				
$\log \text{Cl} = 2.06 - (0.297 - 0.038\text{C}_1 + 0.004\text{S}_1)\log Q$	54	0	0.81	0.097	-20 to 25				
$\log DS = 2.84 - (0.055 - 0.079C_1 + 0.165S_1) \log Q - 0.120C_1 + 0.299S_1$	54	1.66 x 10 ⁻¹⁵	0.80	0.064	-14 to 16				
Maple River near Enderlin, N. Dak Range of fit: 1.3 ≤		ation 05059700)						
$\log \text{CaCO}_3 = 2.92 - (0.185 + 0.067\text{C}_1 + 0.052\text{S}_1)\log Q$	77	0	0.85	0.098	-20 to 25				
$\log \mathrm{Na} = 2.03 - (0.100 + 0.002 \mathrm{C}_1 + 0.188 \mathrm{S}_1) \log Q - 0.052 \mathrm{C}_1 + 0.141 \mathrm{S}_1$	78	0	0.78	0.139	-27 to 38				
$\log SO_4 = 2.74 - (0.192 + 0.098C_1 + 0.070S_1)\log Q$	75	0	0.78	0.136	-27 to 37				
$\log \text{Cl} = 1.90 - (0.218 + 0.049\text{C}_1 + 0.044\text{S}_1)\log Q$	77	0	0.69	0.179	-38 to 51				
$\log \mathrm{DS} = 3.13 - (0.179 + 0.099 \mathrm{C}_1 + 0.084 \mathrm{S}_1) \log Q + 0.044 \mathrm{C}_1 + 0.056 \mathrm{S}_1$	77	0	0.86	0.093	-19 to 24				

Maple River below Mapleton, N. Dak., gaging station 05060100 Range of fit: $0.79 \le Q \le 6,620$

Insufficient data for regression development.

Table 2. Relations between selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

[log, base-10 logarithm; $CaCO_3$, hardness concentration, in milligrams per liter; C_1 , $\cos(2\pi \, \text{month}/12)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; S_1 , $\sin(2\pi \, \text{month}/12)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; Q, streamflow, in cubic feet per second; Na, sodium concentration, in milligrams per liter; \leq , less than or equal to; <, less than; SO_4 , sulfate concentration, in milligrams per liter; C_1 , chloride concentration, in milligrams per liter; DS, dissolved-solids concentration, in milligrams per liter; C_2 , $\cos(2\pi \, \text{month}/6)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; and S_2 , $\sin(2\pi \, \text{month}/6)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December]

	Number	In ba	se-10 logaritl	ım	Range of				
Equation		p-value	Coefficient of determi- nation (R ²)	Residual standard con ()	standard error of actual concentration (percent)				
Rush River at Amenia, N. Dak., gaging station 05060500 Range of fit: 0.01 < Q < 2,310									
$\log \text{CaCO}_3 = 2.77 - (0.140 + 0.117\text{C}_1 + 0.113\text{S}_1) \log Q$	45	0	0.87	0.096	-20 to 25				
$\log \mathrm{Na} = 1.82 - (0.237 + 0.138 \mathrm{C}_1 + 0.149 \mathrm{S}_1) \log Q - 0.106 \mathrm{C}_1 + 0.142 \mathrm{S}_1$	46	0	0.88	0.131	-26 to 35				
$\log \mathrm{SO_4} = 2.47 - (0.274 + 0.201 \mathrm{C_1} + 0.052 \mathrm{S_1}) \log Q - 0.177 \mathrm{C_1} + 0.105 \mathrm{S_1}$	44	2.01 x 10 ⁻¹⁴	0.85	0.138	-27 to 37				
$\log \text{Cl} = 1.71 - 0.212 \log Q + 0.398 \text{C}_1 - 0.008 \text{S}_1 + 0.333 \text{C}_2 - 0.241 \text{S}_2$	46	7.19 x 10 ⁻⁹	0.68	0.222	-40 to 67				
$\log DS = 2.97 - (0.145 + 0.121C_1 + 0.124S_1) \log Q$	45	0	0.88	0.101	-21 to 26				

Buffalo River near Dilworth, Minn., gaging station 05062000 Range of fit: $6.1 \le Q \le 5,250$

Insufficient data for regression development.

Elm River near Kelso, N. Dak., gaging station 05062200 Range of fit: $0.01 \le Q \le 705$

Insufficient data for regression development.

Wild Rice River at Twin Valley, Minn., gaging station 05062500 Range of fit: $2.8 \le Q \le 4,330$

$\log \text{CaCO}_3 = 2.62 - (0.091 + 0.055\text{C}_1 + 0.062\text{S}_1)\log Q + 0.156\text{C}_1 + 0.139\text{S}_1$		168	0	0.72	0.045	-9.8 to 11
$\log \mathrm{Na} = 1.53 - (0.272 + 0.066 \mathrm{C_1} + 0.038 \mathrm{S_1}) \log Q + 0.135 \mathrm{C_1} + 0.091 \mathrm{S_1}$		169	0	0.83	0.077	-16 to 20
$SO_4 = 64.9Q^{-0.159}$ $SO_4 = 115Q^{-0.386}$ $SO_4 = 691Q^{-0.857}$ $SO_4 = 0.266Q^{0.988}$ $SO_4 = 9.18Q^{0.220}$ $SO_4 = 29.9Q^{0.043}$	$2.8 \le Q \le 12.6$ $12.6 < Q \le 44.7$ $44.7 < Q \le 70.8$ $70.8 < Q \le 100$ $100 < Q \le 794$ $794 < Q \le 4,330$	168	0	0.42	0.138	-27 to 37
$\begin{split} \log \text{C1} &= 0.555 + 0.020 \log Q + 0.052 \text{C}_1 + 0.018 \text{S}_1 - 0.058 \text{C}_2 + 0.010 \text{S}_2 \\ \text{(Alternate option: use mean value of 4.48 instead of equation.)} \end{split}$		168	0.006	0.10	0.186	-35 to 53
$logDS = 2.70 - (0.100 + 0.056C_1 + 0.043S_1$	$)\log Q + 0.163C_1 + 0.112S_1$	168	0	0.73	0.045	-9.9 to 11

Table 2. Relations between selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

[log, base-10 logarithm; $CaCO_3$, hardness concentration, in milligrams per liter; C_1 , $\cos(2\pi \text{ month}/12)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; S_1 , S_2 , S_3 , S_4 , S_4 , S_4 , S_4 , S_4 , S_4 , S_5 , S

	Number	In base-10 logarithm			Range of	
Equation		p-value	Coefficient of determi- nation (R ²)	Residual standard error	standard error of actual concentration (percent)	
Wild Rice River at Hendrum, Minr Range of fit: $0.09 \le Q \le 9,110$ for Cl and $4.7 \le 100$						
$CaCO_3 = 628Q^{-0.169}$	7	7.38 x 10 ⁻⁵	0.97	0.030	-6.6 to 7.1	
$Na = 48.6Q^{-0.305}$	7	8.00 x 10 ⁻⁵	0.96	0.055	-12 to 13	
$\log SO_4 = 2.01 - (0.170 + 0.091C_1 + 0.026S_1)\log Q$	8	0.227	0.63	0.114	-23 to 30	
$\log \mathrm{Cl} = 0.913 - 0.127 \log Q + 0.053 \mathrm{C}_1 + 0.074 \mathrm{S}_1 - 0.008 \mathrm{C}_2 - 0.005 \mathrm{S}_2$	114	1.11 x 10 ⁻¹⁵	0.52	0.128	-25 to 34	
$DS = 728Q^{-0.165}$	7	1.51 x 10 ⁻⁴	0.95	0.034	-7.4 to 8.0	
Red River of the North at Halstad, M Range of fit: 109 ≤		station 05064	500			
$\label{eq:caco} \log \text{CaCO}_3 = 2.75 - 0.098 \\ \log Q + 0.032 \\ \\ C_1 + 0.014 \\ \\ S_1 + 0.047 \\ \\ C_2 - 0.019 \\ \\ S_2$	163	0	0.43	0.084	-18 to 21	
$\log \mathrm{Na} = 2.16 - 0.229 \log Q + 0.028 \mathrm{C}_1 + 0.009 \mathrm{S}_1 + 0.053 \mathrm{C}_2 - 0.046 \mathrm{S}_2$	162	0	0.53	0.136	-27 to 37	
$\log \mathrm{SO_4} = 2.16 - 0.047 \log Q + 0.027 \mathrm{C_1} - 0.028 \mathrm{S_1} + 0.083 \mathrm{C_2} - 0.064 \mathrm{S_2}$	161	7.76 x 10 ⁻⁷	0.21	0.159	-31 to 44	
$\log \text{Cl} = 1.95 - 0.243 \log Q + 0.027 \\ \text{C}_1 + 0.016 \\ \text{S}_1 + 0.039 \\ \text{C}_2 - 0.051 \\ \text{S}_2$	161	0	0.53	0.138	-27 to 38	
$\log \mathrm{DS} = 2.94 - 0.109 \log Q + 0.024 \mathrm{C}_1 + 0.010 \mathrm{S}_1 + 0.047 \mathrm{C}_2 - 0.024 \mathrm{S}_2$	161	0	0.43	0.087	-18 to 22	
Goose River at Hillsboro, N. Dak. Range of fit: 0.07 s		tion 05066500				
$\log \text{CaCO}_3 = 2.88 - (0.101 + 0.044\text{C}_1 + 0.140\text{S}_1)\log Q + 0.060\text{C}_1 + 0.168\text{S}_1$		0	0.80	0.100	-20 to 26	
$\log \mathrm{Na} = 2.29 - (0.239 + 0.072 \mathrm{C}_1 + 0.167 \mathrm{S}_1) \log Q + 0.134 \mathrm{C}_1 + 0.262 \mathrm{S}_1$	89	0	0.86	0.136	-27 to 37	
$\log \mathrm{SO_4} = 2.75 - (0.124 + 0.057 \mathrm{C_1} + 0.154 \mathrm{S_1}) \log Q + 0.075 \mathrm{C_1} + 0.194 \mathrm{S_1}$	90	0	0.78	0.122	-26 to 35	
$\log \text{C1} = 2.21 - (0.335 + 0.066\text{C}_1 + 0.145\text{S}_1)\log Q + 0.149\text{C}_1 + 0.315\text{S}_1$		0	0.86	0.164	-31 to 46	
$\log \mathrm{DS} = 3.16 - (0.142 + 0.057 \mathrm{C}_1 + 0.140 \mathrm{S}_1) \log Q + 0.088 \mathrm{C}_1 + 0.192 \mathrm{S}_1$	89	0	0.86	0.095	-20 to 24	

Sand Hill River near Climax, Minn., gaging station 05069000 Range of fit: $10 \le Q \le 18$ for CaCO₃, Na, SO₄, and Cl and $18 \le Q \le 18$ for DS

Insufficient data for regression development.

Table 2. Relations between selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

[log, base-10 logarithm; $CaCO_3$, hardness concentration, in milligrams per liter; C_1 , $\cos(2\pi \, \text{month}/12)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; S_1 , $\sin(2\pi \, \text{month}/12)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; Q, streamflow, in cubic feet per second; Na, sodium concentration, in milligrams per liter; \leq , less than or equal to; <, less than; SO_4 , sulfate concentration, in milligrams per liter; C_1 , chloride concentration, in milligrams per liter; DS, dissolved-solids concentration, in milligrams per liter; C_2 , $\cos(2\pi \, \text{month}/6)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; and S_2 , $\sin(2\pi \, \text{month}/6)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December]

		Number	In ba	In base-10 logarithm		
Equation		of data pairs	p-value	Coefficient of determi- nation (R ²)	Residual standard error	standard error of actual concentration (percent)
Clearwa	ter River at Red Lake Falls, M Range of fit: 40 ≤		g station 05078	3500		
$logCaCO_3 = 2.73 - (0.158 + 0.143C_1 + 0.134S_1 + 0.134S_2 + 0.143C_1 + 0.1$		12	0.244	0.60	0.102	-21 to 26
$logNa = 1.15 - (0.103 + 0.004C_1 - 0.013S_1)log$	Q	11	0.047	0.66	0.050	-11 to 12
$\log SO_4 = 1.36 + 0.098 \log Q - 0.048C_1 - 0.092S_2$	$S_1 + 0.102C_2 - 0.148S_2$	11	0.073	0.80	0.125	-25 to 33
$logCl = 0.716 + (0.009 + 0.475C_1 - 0.072S_1)log$	$gQ - 1.02C_1 + 0.266S_1$	11	0.194	0.69	0.078	-16 to 20
$logDS = 2.49 + (0.008 + 0.018C_1 + 0.038S_1)logDS$	$gQ + 0.033C_1 - 0.009S_1$	10	0.194	0.76	0.036	-8.0 to 8.6
Red L	ake River at Crookston, Minn Range of fit: 70 ≤ 0		ation 05079000)		
$logCaCO_3 = 2.62 - (0.106 + 0.079C_1 + 0.044S_1)$	$(1)\log Q + 0.216C_1 + 0.112S_1$	166	3.33 x 10 ⁻¹⁶	0.40	0.067	-14 to 17
$\log \text{Na} = 1.54 - 0.276 \log Q - 0.017 \text{C}_1 - 0.017 \text{S}_1 + 0.014 \text{C}_2 - 0.031 \text{S}_2$		167	0	0.62	0.100	-21 to 26
$\log SO_4 = 1.80 - 0.115 \log Q - 0.195C_1 - 0.96S_1$	+ 0.032C ₂ - 0.163S ₂	166	0	0.43	0.219	-40 to 66
CI = $41.6Q^{-0.365}$ CI = $40.1Q^{-0.359}$ CI = $0.147Q^{0.427}$ CI = $33.7Q^{-0.229}$	$70 \le Q \le 631$ $631 < Q \le 1,260$ $1,260 < Q \le 3,980$ $3,980 < Q \le 15,000$	165	3.09 x 10 ⁻¹³	0.33	0.166	-32 to 47
$logDS = 2.68 - (0.110 + 0.081C_1 + 0.036S_1)logDS$	$gQ + 0.212C_1 + 0.089S_1$	166	2.33 x 10 ⁻¹⁵	0.38	0.072	-15 to 18
Red River o	of the North at Grand Forks, N Range of fit: 156 ≤ (ing station 050	82500		
$logCaCO_3 = 2.70 - 0.092logQ - 0.012C_1 + 0.00$	$07S_1 + 0.051C_2 - 0.013S_2$	528	0	0.40	0.066	-14 to 16
$logNa = 1.88 - (0.203 + 0.116C_1 + 0.048S_1)log$	$gQ + 0.336C_1 + 0.200S_1$	528	0	0.35	0.126	-25 to 34
$\log SO_4 = 1.86 - 0.015 \log Q - 0.116C_1 - 0.015S$	$_1 + 0.068C_2 - 0.061S_2$	464	0	0.30	0.153	-30 to 42
$logCl = 1.59 - (0.185 + 0.001C_1 - 0.013S_1)logg$	Q	249	2.06 x 10 ⁻¹²	0.21	0.178	-34 to 51
DS = $1,670Q^{-0.244}$ DS = $103Q^{0.146}$ DS = $2,230Q^{-0.215}$	$156 \le Q \le 1,260$ $1,260 < Q \le 5,010$ $5,010 < Q \le 105,000$	246	0	0.32	0.079	-17 to 20

Table 2. Relations between selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

[log, base-10 logarithm; $CaCO_3$, hardness concentration, in milligrams per liter; C_1 , $\cos(2\pi \text{ month}/12)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; S_1 , S_2 , S_3 , S_4 , S_4 , S_4 , S_4 , S_4 , S_4 , S_5 , S

		Number	In ba	se-10 logaritl	hm	Range of
Equation		of data pairs	p-value	Coefficient of determi- nation (R ²)	Residual standard error	standard error of actual concentration (percent)
Turtle Ri	ver at Manvel, N. Dak., ç Range of fit: 0.20 ≤		ion 05083000			
$logCaCO_3 = 2.94 - (0.097 - 0.006C_1 + 0.075S_1)logG$	=	36	2.33 x 10 ⁻¹⁰	0.77	0.104	-21 to 27
$\log \text{Na} = 2.83 - (0.163 + 0.016\text{C}_1 + 0.104\text{S}_1) \log Q$		36	6.02 x 10 ⁻⁹	0.72	0.172	-33 to 49
$logSO_4 = 2.72 - (0.080 - 0.013C_1 + 0.078S_1)logQ$		36	3.93 x 10 ⁻⁷	0.63	0.136	-27 to 37
$\log C1 = 2.96 - (0.120 + 0.002C_1 + 0.124S_1)\log Q$		37	4.31 x 10 ⁻⁸	0.67	0.194	-36 to 56
$logDS = 3.41 - (0.101 - 0.017C_1 + 0.094S_1)logQ$		38	1.61 x 10 ⁻⁹	0.72	0.139	-27 to 38
Forest F	River at Minto, N. Dak., g Range of fit: 0.10 <		on 05085000			
$\log \text{CaCO}_3 = 2.63 - (0.083 + 0.058\text{C}_1 + 0.097\text{S}_1) \log$	$Q + 0.071C_1 + 0.104S_1$	90	0	0.69	0.082	-17 to 21
$Na = 23.2Q_{0.360}^{0.118} $ 20.0	$0 \le Q \le 20.0$ $0 < Q \le 158$ $0 < Q \le 6,140$	88	4.50 x 10 ⁻⁹	0.39	0.126	-25 to 34
$SO_4 = 87.6Q^{0.259}$ 4.0 $SO_4 = 271Q^{-0.257}$ 9.0 $SO_4 = 80.6Q^{0.148}$ 20.0	$0 \le Q \le 4.0$ $< Q \le 9.0$ $< Q \le 20.0$ $0 < Q \le 200$ $< Q \le 6.140$	91	5.70 x 10 ⁻⁶	0.31	0.138	-27 to 37
$CI = 84.8 Q^{-0.505}$ 4.0 · CI = 15.7 $Q^{0.057}$ 20.0	$0 \le Q \le 4.0$ $< Q \le 20.0$ $0 < Q \le 200$ $< Q \le 6.140$	89	0	0.76	0.122	-25 to 33
$DS = 531Q^{-0.033} $ 3.0	$0 \le Q \le 3.0$ $< Q \le 200$ $< Q \le 6,140$	89	4.44 x 10 ⁻¹⁶	0.58	0.086	-18 to 22
Snake F	River at Warren, Minn., g Range of fit: 0.10		on 05085500			
$logCaCO_3 = 2.40 - (0.012 - 0.087C_1 + 0.137S_1)logg$	-	13	0.001	0.92	0.036	-7.9 to 8.6
$\log \text{Na} = 2.54 - (0.623 + 0.516\text{C}_1 + 0.393\text{S}_1)\log Q +$	$1.17C_1 + 0.104S_1$	13	0.004	0.88	0.060	-13 to 15
$\log SO_4 = 2.24 - (0.698 + 0.628C_1 - 0.220S_1)\log Q$		14	1.44 x 10 ⁻⁴	0.86	0.059	-13 to 15
	$0 \le Q \le 7.94$ $0 < Q \le 206$	13	1.56 x 10 ⁻⁵	0.89	0.185	-35 to 53
$logDS = 2.77 - (0.146 + 0.073C_1 + 0.143S_1)logQ -$	$0.025C_1 + 0.067S_1$	13	0.005	0.87	0.041	-9.0 to 9.9

Table 2. Relations between selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

[log, base-10 logarithm; $CaCO_3$, hardness concentration, in milligrams per liter; C_1 , $\cos(2\pi \, \text{month}/12)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; S_1 , $\sin(2\pi \, \text{month}/12)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; Q, streamflow, in cubic feet per second; Na, sodium concentration, in milligrams per liter; \leq , less than or equal to; <, less than; SO_4 , sulfate concentration, in milligrams per liter; C_1 , chloride concentration, in milligrams per liter; DS, dissolved-solids concentration, in milligrams per liter; C_2 , $\cos(2\pi \, \text{month}/6)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; and S_2 , $\sin(2\pi \, \text{month}/6)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December]

		Number — In		ase-10 logaritl	Range of	
Equa	tion	of data pairs	p-value	Coefficient of determi- nation (R ²)	Residual standard error	standard error of actual concentration (percent)
	Middle River at Argyle, Minn., g Range of fit: 0.10		on 05087500			
$logCaCO_3 = 2.50 - (0.085 + 0.108C_1 - 0.085)$	<u> </u>	23	1.46 x 10 ⁻⁵	0.72	0.080	-17 to 20
Na = $12.8Q^{0.042}$ Na = $23.8Q^{-0.857}$ Na = $1.16Q^{0.602}$ Na = $16.0Q^{-0.214}$ Na = $23.1Q^{-0.299}$	$0.10 \le Q \le 2.0$ $2.0 < Q \le 7.94$ $7.94 < Q \le 25.1$ $25.1 < Q \le 70.8$ $70.8 < Q \le 122$	22	0.003	0.64	0.100	-20 to 26
$\log SO_4 = 1.43 - (0.183 + 0.292C_1 - 0.165S_1)\log Q - 0.286C_1 - 0.077S_1$		22	0.012	0.57	0.107	-22 to 28
$\log \text{Cl} = 3.01 - 0.562 \log Q + 3.10 \text{C}_1 + 6.10 \text{C}_1 +$	$0.171S_1 + 1.14C_2 - 0.218S_2$	18	3.93 x 10 ⁻⁵	0.88	0.124	-25 to 33
$logDS = 2.56 - (0.071 + 0.121C_1 + 0.0000)$	$0.91S_1)\log Q$	23	1.21 x 10 ⁻⁵	0.73	0.069	-15 to 17
	Park River at Grafton, N. Dak., g Range of fit: 0.01 ≤		on 05090000			
$logCaCO_3 = 2.59 - (0.045 + 0.020C_1 - 0.000C_1 - 0.0$	· ·	78	0	0.81	0.080	-17 to 20
$Na = 115Q^{-0.066}$ $Na = 121Q^{0.052}$ $Na = 177Q^{-0.220}$ $Na = 263Q^{-0.344}$	$0.01 \le Q \le 1.58$ $1.58 < Q \le 3.98$ $3.98 < Q \le 25.1$ $25.1 < Q \le 4,840$	79	0	0.81	0.142	-28 to 39
$\log SO_4 = 2.41 - (0.062 + 0.014C_1 + 0.004C_1 + 0.004C$	$113S_1)\log Q$	79	0	0.77	0.105	-21 to 27
C1 = $123Q^{-0.050}$ C1 = $184Q^{-0.270}$ C1 = $379Q^{-0.472}$	$0.01 \le Q \le 6.31$ $6.31 < Q \le 35.5$ $35.5 < Q \le 4,840$	79	0	0.78	0.199	-37 to 58
$logDS = 2.93 - (0.074 - 0.019C_1 + 0.1)$	$05S_1)\log Q - 0.021C_1 + 0.024S_1$	79	0	0.83	0.093	-19 to 24

Table 2. Relations between selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

[log, base-10 logarithm; $CaCO_3$, hardness concentration, in milligrams per liter; C_1 , $\cos(2\pi \text{ month}/12)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; S_1 , S_2 , S_3 , S_4 , S_4 , S_4 , S_4 , S_4 , S_4 , S_5 , S

		In base-10 logarithm			hm	Range of
Equatio	n	Number of data pairs	p-value	Coefficient of determi- nation (R ²)	Residual standard error	standard error of actual concentration (percent)
Red	I River of the North at Drayton, N. Range of fit: 169 ≤		g station 05092	2000		
$CaCO_3 = 540Q^{-0.091}$ $CaCO_3 = 943Q^{-0.169}$ $CaCO_3 = 185Q^{0.033}$ $CaCO_3 = 259Q^{-0.005}$ $CaCO_3 = 15,210Q^{-0.426}$	$169 \le Q \le 1,260$ $1,260 < Q \le 3,160$ $3,160 < Q \le 7,080$ $7,080 < Q \le 15,850$ $15,850 < Q \le 91,000$	55	8.80 x 10 ⁻⁸	0.56	0.086	-18 to 22
$\log \text{Na} = 3.13 - (0.455 - 0.035S_1)\log Q$		53	1.34 x 10 ⁻¹³	0.72	0.151	-29 to 42
$SO_4 = 175Q^{-0.074}$ $SO_4 = 1,010Q^{-0.328}$ $SO_4 = 5.45Q^{0.320}$ $SO_4 = 874Q^{-0.245}$	$169 \le Q \le 1,000$ $1,000 < Q \le 3,160$ $3,160 < Q \le 7,940$ $7,940 < Q \le 91,000$	54	0.015	0.22	0.156	-30 to 43
CI = $487Q^{-0.261}$ CI = $305,350Q^{-1.19}$ CI = $137Q^{-0.179}$ CI = $223,070Q^{-0.935}$	$\begin{aligned} &169 \leq Q \leq 1,000 \\ &1,000 < Q \leq 2,000 \\ &2,000 < Q \leq 17,780 \\ &17,780 < Q \leq 91,000 \end{aligned}$	53	3.33 x 10 ⁻¹⁵	0.78	0.174	-33 to 49
DS = $1,890Q^{-0.193}$ DS = $5,540Q^{-0.346}$ DS = $282Q^{0.029}$ DS = $5,980Q^{-0.303}$	$\begin{aligned} &169 \leq Q \leq 1,120 \\ &1,120 < Q \leq 2,820 \\ &2,820 < Q \leq 10,000 \\ &10,000 < Q \leq 91,000 \end{aligned}$	53	8.11 x 10 ⁻¹¹	0.66	0.092	-19 to 24
	Pembina River at Neche, N. Dak Range of fit: 5.6 ≤		tion 05100000			
$logCaCO_3 = 2.68 - (0.106 + 0.013C_1 + 0.013C_1)$	•	52	1.11 x 10 ⁻¹⁶	0.80	0.082	-17 to 21
$logNa = 1.73 - (0.051 + 0.008C_1 + 0.085)$	$S_1)\log Q - 0.002C_1 + 0.106S_1$	52	2.15 x 10 ⁻¹¹	0.71	0.079	-17 to 20
$\log SO_4 = 2.40 - (0.109 + 0.108C_1 + 0.07$	$1S_1)\log Q + 0.146C_1 + 0.064S_1$	52	1.02 x 10 ⁻⁹	0.66	0.096	-20 to 25
$\log \text{Cl} = 1.54 - (0.198 + 0.047C_1 + 0.034S_2)$	$S_1){\log}Q$	52	1.33 x 10 ⁻¹⁵	0.78	0.107	-22 to 28
$logDS = 2.85 - (0.093 + 0.021C_1 + 0.041$	$S_1)\log Q$	52	0	0.82	0.066	-14 to 16

Table 2. Relations between selected water-quality constituents and streamflow (discharge) for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota.—Continued

[log, base-10 logarithm; $CaCO_3$, hardness concentration, in milligrams per liter; C_1 , $\cos(2\pi \, \text{month}/12)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; S_1 , $\sin(2\pi \, \text{month}/12)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; Q, streamflow, in cubic feet per second; Na, sodium concentration, in milligrams per liter; \leq , less than or equal to; <, less than; SO_4 , sulfate concentration, in milligrams per liter; C_1 , chloride concentration, in milligrams per liter; DS, dissolved-solids concentration, in milligrams per liter; C_2 , $\cos(2\pi \, \text{month}/6)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December; and S_2 , $\sin(2\pi \, \text{month}/6)$ where month = 1, ..., 12 and 1 = January, ..., 12 = December]

			In base-10 logarithm			Range of
Equation		Number of data pairs	p-value	Coefficient of determi- nation (R ²)	Residual standard error	standard error of actual concentration (percent)
То	ngue River at Akra, N. Dak., g Range of fit: 0.02 <u>s</u>		on 05101000			
$logCaCO_3 = 2.44 - (0.052 + 0.028C_1 + 0.068S_1)$	$(1)\log Q + 0.063C_1 + 0.066S_1$	75	3.84 x 10 ⁻¹¹	0.56	0.071	-15 to 18
$logNa = 1.44 - (0.017 + 0.025C_1 + 0.053S_1)log$	$gQ + 0.038C_1 + 0.006S_1$	76	1.97 x 10 ⁻⁶	0.38	0.079	-17 to 20
$logSO_4 = 1.96 - (0.037 + 0.069C_1 + 0.051S_1)logSO_4 = 0.051S_1 + 0.051$	$\log Q + 0.039C_1 + 0.012S_1$	75	0.001	0.26	0.098	-20 to 25
$\log \text{Cl} = 0.960 + (0.040 + 0.031\text{C}_1 - 0.076\text{S}_1) \log Q - 0.051\text{C}_1 + 0.041\text{S}_1$		75	0.008	0.20	0.107	-22 to 28
$logDS = 2.59 - (0.044 + 0.038C_1 + 0.062S_1)logDS = 0.044 + 0.048C_1 $	$gQ + 0.052C_1 + 0.054S_1$	74	7.43 x 10 ⁻¹⁰	0.52	0.065	-14 to 16
Red River	of the North at Emerson, Man Range of fit: 222 ≤ 0		ng station 051	02500		
$logCaCO_3 = 2.72 - (0.087 + 0.061C_1 + 0.053S_1)$	-		1.62 x 10 ⁻¹¹	0.35	0.073	-15 to 18
Na = $5,130Q^{-0.685}$ Na = $10.3Q^{0.145}$ Na = $357Q^{-0.282}$	$222 \le Q \le 1,780$ $1,780 < Q \le 3,980$ $3,980 < Q \le 62,800$	140	0	0.58	0.156	-30 to 43
$\log SO_4 = 2.23 - 0.081 \log Q - 0.031 C_1 - 0.026 S$	₁ + 0.096C ₂ - 0.077S ₂	141	2.35 x 10 ⁻⁹	0.30	0.144	-28 to 39
Cl = $17,210Q^{-0.847}$ Cl = $7.52Q^{0.187}$ Cl = $723Q^{-0.372}$	$222 \le Q \le 1,780$ $1,780 < Q \le 3,550$ $3,550 < Q \le 62,800$	142	0	0.59	0.198	-37 to 58
DS = $3.820Q^{-0.311}$ DS = $46.9Q^{0.268}$ DS = $1.670Q^{-0.163}$	$222 \le Q \le 2,000$ $2,000 < Q \le 3,980$ $3,980 < Q \le 62,800$	141	0	0.48	0.085	-18 to 22

where

FWC is monthly flow-weighted water-quality concentration, in milligrams per liter;

is daily water-quality concentration determined from C_i regression equation or mean value in table 1, in milligrams per liter;

is mean daily streamflow, in cubic feet per second; q_i

is number of days in month;

is i^{th} day of month; and

BCF is regression equation bias correction factor because of base-10 log-transformation and determined using $10^{1.15s^2}$, where s is the residual standard error.

After the FWC is determined, a load may be calculated using the following equation:

Load = FWC
$$x$$
 cf x $\sum_{i=1}^{n} q_i$ (5)

where

is monthly constituent load, dependent upon units Load desired (for example, tons per acre-foot);

cf is conversion factor to change FWC into desired units (for example, cf = 0.00136 to change FWC from milligrams per liter to tons per acre-foot); and

 $\sum q_i$ is total streamflow for month, dependent upon units

desired (for example, acre-foot).

An estimate of FWC that occurs at the mean flow for a given month may be determined using equation 4. Instead of using mean daily streamflow values, a single monthly mean streamflow value is used for q_i . This method is not accurate for proper load estimates, but may be adequate if a point-value for a given month is desired. However, additional monthly and/or seasonal bias would need to be determined to more accurately estimate the load because this method could over or under estimate the actual monthly flow-weighted water-quality concentration.

Summary

The Dakota Water Resources Act was passed by the U.S. Congress on December 15, 2000. The Act authorized the Secretary of the Interior to conduct a comprehensive study, administrated by the Bureau of Reclamation, of future waterquantity and quality needs of the Red River of the North Basin in North Dakota and possible options to meet those water needs. To provide needed information for the comprehensive study, the U.S. Geological Survey conducted a study in cooperation with the Bureau of Reclamation. This report provides updated statistical summaries of selected water-quality constituents and streamflow and the regression relations between them.

Available data for 1931-99 were used to develop regression equations between 5 selected water-quality

constituents and streamflow for 38 selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota. The water-quality constituents that were regressed against streamflow were hardness (as CaCO₃), sodium, chloride, sulfate, and dissolved solids.

Daily mean streamflow records were more complete than instantaneous streamflow records and were readily available for most of the gaging stations; therefore, daily mean streamflow records were used to develop the regression equations with the water-quality constituents when instantaneous streamflow records were too few. At some gaging stations, instantaneous and daily mean streamflow records were combined to complete the streamflow record needed. Statistical summaries of the 5 selected water-quality constituents and streamflow for the 38 selected gaging stations used in the regression equations development are presented in this report. The statistical summaries include number of samples; average annual sampling frequency; number of samples years; descriptive statistics of the maximum, minimum, mean, and standard deviation; and values for the 25th, 50th, and 75th percentiles.

Two general equations were considered to model the relation between water-quality constituents and streamflow for the selected gaging stations in the Red River of the North Basin. The first equation assumed that the base-10 logarithm of a water-quality constituent concentration is a piece-wise linear, continuous function of the base-10 logarithm of streamflow. The second equation was a multiple linear regression model that incorporated month and streamflow as explanatory variables to allow the intercept and/or slope to change depending upon the time of year. The best equation for each gaging station was selected based on review of the residual plots, coefficient of determination, residual standard error of the regression, pvalue, and F-statistic. The final regression equations, number of data pairs used in the equation development, p-value, coefficient of determination, residual standard error, and range of standard error of actual concentration for each gaging station are presented in this report. The applications and limitations of the regression equations also are presented in this report.

References

Bureau of Reclamation, 1998, Red River Valley Water Needs Assessment--Phase I Part A, MR&I Appraisal Report: U.S. Department of the Interior, 138 p.

Bureau of Reclamation, 1999, Red River Valley Water Needs Assessment--Final Appraisal Report, Phase I Part B, Instream Flow Needs Assessment: U.S. Department of the Interior, 83 p.

Emerson, D.G. and Dressler, V.M., 2002, Historic and unregulated monthly streamflow for selected sites in the Red River of the North Basin in North Dakota, Minnesota, and South Dakota: U.S. Geological Survey Water-Resources Investigations Report 02-4095, 271 p.

- Guenthner, R.S., Weigel, J.F., and Emerson, D.G., 1990, Gaged and estimated monthly streamflow during 1931-84 for selected sites in the Red River of the North Basin in North Dakota and Minnesota: U.S. Geological Survey Water-Resources Investigations Report 90-4167, 230 p.
- Guenthner, R.S., 1991, Methods for estimating monthly mean concentrations of selected water-quality constituents for stream sites in the Red River of the North Basin, North Dakota and Minnesota: U.S. Geological Survey Water-Resources Investigations Report 91-4086, 113 p.
- Helsel, D.R. and Hirsch, R.M., 1992, Statistical methods in water resources: Amsterdam, the Netherlands, Elsevier Science Publishers, 522 p.
- Macek-Rowland, K.M. and Dressler, V.M., 2002, Statistical summaries of water-quality data for selected streamflowgaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota: U.S. Geological Survey Open-File Report 02-390, 229 p.
- Miller, J.E. and Frink, D.L., 1984, Changes in flood response of the Red River of the North Basin, North Dakota-Minnesota: U.S. Geological Survey Water-Supply Paper 2243, 103 p.
- Souris-Red-Rainy River Basins Commission, 1972, Souris-Red-Rainy River basins comprehensive study: v. 3, Appendix D, p. D1-D157.
- Tornes, L.H., Brigham, M.E., and Lorenz, D.L., 1997, Nutrients, suspended sediment, and pesticides in streams in the Red River of the North Basin, Minnesota, North Dakota, and South Dakota, 1993-95: U.S. Geological Survey Water-Resources Investigations Report 97-4053, 70 p.
- U.S. Geological Survey, 2000, Water resources data for North Dakota, water year 1999: U.S Geological Survey Water-Data Report ND-99-1, 517 p.

